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Abstract

Many chemical indices have been invented in theoretical chemistry, such as the

Randić index, the Zagreb index and the Wiener index etc. In this paper, the

Nordhaus-Goddum-type inequalities for these three kinds of chemical indices are

presented. The corresponding extremal graphs for the inequalities are also given.

1 Introduction

Let G = (V (G), E(G)) be a graph. The degree and the neighborhood of a vertex

u ∈ V (G) is denoted by dG(u) and NG(u) (or simply by d(u) and N(u)), respectively.

Given two adjacent vertices u and v of a graph G, the Randić weight of the edge uv

is R(uv) = (d(u)d(v))−
1
2 , and the Randić index of a graph G, R(G), is the sum of the

Randić weights of its edges. Randić [6] proposed the important topological index in his

research on molecular structures, which is closely related with many chemical properties.

Fixing α ∈ R−{0}, the general Randić index is defined as Rα(G) =
∑

uv∈E(G) Rα(uv) =
∑

uv∈E(G)(d(u)d(v))α. Hence, R− 1
2
(G) is the ordinary Randić index of G.

There are also a large number of other chemical indices of molecular graphs. Next we

just give the definitions of those are particularly concerned with in this paper. The first

Zagreb index M1(G) and the second Zagreb index M2(G), defined in [1], are M1(G) =
∑

u∈V (G)(d(u))2 and M2(G) =
∑

uv∈E(G) d(u)d(v), respectively. Note that the second

Zagreb index M2(G) is just the general Randić index R1(G). By observing the common

appearance of the general Randić index and the Zagreb index, Li and Zhao [4] introduced
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the first general Zagreb index as Mα(G) =
∑

u∈V (G)(d(u))α where α ∈ R and α 6= 0. The

Wiener index of G, defined in [7], is W (G) =
∑
{u,v} dG(u, v) where dG(u, v) denotes the

distance between u and v in G and the sum goes over all the unordered pairs of vertices.

For the results and further references the reader may refer to the recent survey article

[2].

For a graph G, the chromatic number χ(G) is the minimum number of colors needed

to color the vertices of G in such a way that no two adjacent vertices are assigned the

same color. Throughout the paper, the complement of a graph G, denoted by Ḡ, is the

graph with the same vertex set as G, where two vertices are adjacent if and only if they

are not adjacent in G. In 1956, Nordhaus and Goddum [5] gave the bounds involving

the chromatic number χ(G) of a graph G and its complement.

Theorem 1.1. (Nordhaus and Goddum [5]) Let G be a graph of order n, and Ḡ be its

complement. Then 2
√

n ≤ χ(G) + χ(Ḡ) ≤ n + 1.

Motivated by this theorem, we present the corresponding Nordhaus-Goddum-type

inequalities for the general Randić index, the Zagreb index and the Wiener index in the

following sections.

2 General Randić Index

Lemma 2.1. Define f(x) = xx(a − x)(a−x) for x ∈ (0, a) and f(0) = f(a) = aa. Then

f(x) ≥ (a
2 )a for x ∈ [0, a].

Proof. By the definition of f(x), both f ′(x) and f ′′(x) are continuous on [0, a], and it

is easy to check that a
2 is the unique zero of f ′(x), and f ′′(a

2 ) > 0. This means that

f(x) ≥ f(a
2 ) for any x ∈ [0, a]. 2

Theorem 2.2. Let G be a graph of order n. If α > 0, then

(n
2 )(n−1

2 )2α ≤ Rα(G) + Rα(Ḡ) ≤ (n
2 )(n− 1)2α.

Proof. For a graph G = (V,E) of order n, let ε(G) = |E(G)| and N = (n
2 ). First we

consider the upper bound. Since α > 0, we have

Rα(G) + Rα(Ḡ) =
∑

uv∈E(G)

(dG(u)dG(v))α +
∑

uv∈E(Ḡ)

(dḠ(u)dḠ(v))α

≤ ε(G)[(n− 1)(n− 1)]α + ε(Ḡ)[(n− 1)(n− 1)]α

= (n
2 )(n− 1)2α.
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Now we aim to the lower bound.

Rα(G) + Rα(Ḡ) =
∑

uv∈E(G)

(dG(u)dG(v))α +
∑

uv∈E(Ḡ)

(dḠ(u)dḠ(v))α

≥ N N

√ ∏

uv∈E(G)

(dG(u)dG(v))α
∏

uv∈E(Ḡ)

(dḠ(u)dḠ(v))α

= N N

√ ∏

u∈V (G)

(dG(u))dG(u)α
∏

v∈V (Ḡ)

(dḠ(v))dḠ(v)α

= N [
∏

u∈V (G)

(dG(u))dG(u)(n− 1− dG(u))(n−1−dG(u))]
α
N

≥ N [
∏

u∈V (G)

(
n− 1

2
)(n−1)]

α
N

=
(n

2

)
[(

n− 1
2

)(n−1)n]
2α

n(n−1)

=
(n

2

)
(
n− 1

2
)2α.

2Similarly, we can get the bounds for α < 0.

Theorem 2.3. Let G be a graph of order n, and Ḡ be its complement. If α < 0, then

(n
2 )(n− 1)2α ≤ Rα(G) + Rα(Ḡ) ≤ (n

2 )(n−1
2 )2α.

Note that the bounds are best possible. The complete graph Kn is the unique graph G

whose Rα(G)+Rα(Ḡ) attains the upper bound in Theorem 2.2. For any n = 4k+1, k ≥ 1,

there exists a graph Gn with Gn and Ḡn are 2k-regular. Then Gn is a graph G whose

Rα(G) + Rα(Ḡ) attains the lower bound in Theorem 2.2. For α < 0, Kn and Gn are, in

turn, the graphs whose Rα(G) + Rα(Ḡ) attain the lower and upper bound respectively

in Theorem 2.3.

3 Zagreb Indices

As we have seen before, the second Zagreb index M2(G) of a graph G is just the

general Randić index R1(G). By Theorem 2.2, we have

(n
2 )(

n− 1
2

)2 ≤ M2(G) + M2(Ḡ) ≤ (n
2 )(n− 1)2.

Next we will determine the Nordhaus-Goddum-type inequality for the first general

Zagreb index Mα(G) =
∑

u∈V (G)(dG(u))α, where α ∈ R,α 6= 0 and α 6= 1.

Theorem 3.1. Let G be a graph of order n, then

(i) 2n(n−1
2 )α ≤ Mα(G) + Mα(Ḡ) ≤ n(n− 1)α, if α > 1.

(ii) n(n− 1)α ≤ Mα(G) + Mα(Ḡ) ≤ 2n(n−1
2 )α, if 0 < α < 1.

(iii) 2n(n−1
2 )α ≤ Mα(G) + Mα(Ḡ) ≤ n(1 + (n− 2)α), if α < 0.

- 191 -



Proof. By the definition,

Mα(G) + Mα(Ḡ) =
∑

u∈V (G)

(dG(u))α +
∑

u∈V (Ḡ)

(dḠ(u))α =
∑

u∈V (G)

((dG(u))α + (dḠ(u))α).

Let f(x) = xα, where x ≥ 0, α ∈ R, α 6= 0 and α 6= 1. The second derivative f ′′(x) =

α(α− 1)xα−2 satisfies that f ′′(x) > 0 if α > 1 or α < 0 and f ′′(x) < 0 if 0 < α < 1. This

implies that f(x) is a convex function if α ∈ (−∞, 0)∪ (1,+∞) and is a concave function

if α ∈ (0, 1).

By the definition of convex function, (dG(u))α + (dḠ(u))α ≥ 2(dG(u)+dḠ(u)
2 )α =

2(n−1
2 )α if α ∈ (−∞, 0) ∪ (1,+∞). Thus,

Mα(G) + Mα(Ḡ) ≥ 2n(
n− 1

2
)α, α ∈ (−∞, 0) ∪ (1,+∞). (1)

On the other hand, f(x) = xα is a concave function if α ∈ (0, 1). Hence,

Mα(G) + Mα(Ḡ) ≤ 2n(
n− 1

2
)α, α ∈ (0, 1). (2)

If α > 1, then (dG(u))α + (dḠ(u))α ≤ (dG(u) + dḠ(u))α since ( dG(u)
dG(u)+dḠ(u))

α +

( dḠ(u)
dG(u)+dḠ(u))

α ≤ dG(u)
dG(u)+dḠ(u) + dḠ(u)

dG(u)+dḠ(u) = 1. We have

Mα(G) + Mα(Ḡ) ≤
∑

u∈V (G)

(dG(u) + dḠ(u))α = n(n− 1)α, α ∈ (1,+∞). (3)

Similarly, if 0 < α < 1, then (dG(u))α + (dḠ(u))α ≥ (dG(u) + dḠ(u))α. We have

Mα(G) + Mα(Ḡ) ≥ n(n− 1)α, α ∈ (0, 1). (4)

Let α < 0 and u be any vertex of G. Next we will prove that (dG(u))α + (dḠ(u))α ≤
(n − 2)α + 1. We may assume dG(u) ≥ dḠ(u), and let a = dG(u) and b = dḠ(u). If

b ≤ 1, clearly the inequality holds. If b ≥ 2, then (a + 1)α + (b − 1)α − (aα + bα) =

((a+1)α−aα)− (bα− (b−1)α). Using Lagrange’s mean-value theorem, we conclude that

there exist ξ1 ∈ (a, a + 1) and ξ2 ∈ (b− 1, b) such that ((a + 1)α− aα)− (bα− (b− 1)α) =

αξ
(α−1)
1 −αξ

(α−1)
2 = α(ξ(α−1)

1 − ξ
(α−1)
2 ) > 0. Consequently, by dG(u)+ dḠ(u) = n− 1, we

have (dG(u))α +(dḠ(u))α ≤ (dG(u)+1)α +(dḠ(u)−1)α ≤ · · · ≤ (n−2)α +1α. Therefore,

we obtain Mα(G) + Mα(Ḡ) ≤ n((n− 2)α + 1), α ∈ (−∞, 0). (5)

So (1) and (3) imply (i), (2) and (4) imply (ii), and (1) and (5) imply (iii). 2

Note that the bounds are best possible. The upper bound of (i) and the lower bound

of (ii) are same and are attained uniquely on Kn. On the other hand, The lower bound of

(i) and (iii), and the upper bound of (ii) are same and are attained on the (n−1
2 )-regular

graphs (so n = 4k + 1 for some positive integer k). Also, the upper bound of (iii) is

attained on the graph Hn obtained from Kn by deleting a perfect matching (so, this

occurs only if n is even).
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4 Wiener Index

The Wiener index has no much meaning for disconnected graphs, and so we only

consider it for connected graphs. The path of order n is denoted by Pn, and the star of

order n is denoted by Sn. A tree is called a double star Sp,q if it is obtained from Sp and

Sq by connecting the center of Sp with that of Sq. The diameter of a graph G, denoted

by diam(G), is the largest distance between two vertices in G. Since the Wiener index

is concerned with the distance of vertices, the diameter is important for us to study the

index. The following facts might be found in some graph theory textbook.

Lemma 4.1. Let G be a connected graph with the connected complement. Then

(1) if diam(G) > 3, then diam(Ḡ) = 2,

(2) if diam(G) = 3, then Ḡ has a spanning subgraph which is a double star.

Proof. (1) is an easy exercise. To prove (2), we take two vertices u, v in G such that

dG(u, v) = 3. Then, w 6∈ NG(u) ∩NG(v) for any vertex w ∈ V (G) \ {u, v}, which means

w ∈ NḠ(u)∪NḠ(v) in Ḡ. Therefore, Ḡ contains a spanning double star whose two centers

are u and v. 2

Theorem 4.2. (Entringer et al. [3]) Among all trees with n vertices, Pn is the unique

extremal structure with the largest Wiener index.

Note that P4 is the unique graph of oder 4 whose complement is connected, and P̄4
∼=

P4. So, W (P4)+W (P̄4) = 2W (P4) = 20. Next, we calculate the value of W (Pn)+W (P̄n)

for n ≥ 5. Let Pn = v1v2 · · · vn, then, in Pn, it is easy to see that d(vi, vi+k) = k for

i = 1, 2, · · · , n − k and those pairs of vertices are all the pairs with distance k in Pn.

Therefore,

W (Pn) =
n−1∑

i=1

i(n− i) = n
n−1∑

i=1

i−
n−1∑

i=1

i2 =
n3 − n

6
.

On the other hand, since diam(P̄n) = 2, we have W (P̄n) = ε(P̄n) + 2ε(Pn) = [(n
2 )− (n−

1)]+2(n−1) = n2

2 + n
2 − 1. Hence, W (Pn)+W (P̄n) = n3−n

6 + n2

2 + n
2 −1 = n3+3n2+2n−6

6 .

Lemma 4.3. Let G be a graph of order n ≥ 5. If diam(Ḡ) = 2, then W (G) + W (Ḡ) ≤
W (Pn) + W (P̄n).

Proof. Let T be a spanning tree of G. Then Ḡ is a spanning subgraph of T̄ , and

so T̄ has diameter 2. Therefore, W (G) + W (Ḡ) − W (T̄ ) = W (G) + (ε(T̄ ) − ε(Ḡ)) =

W (G) + (ε(G)− ε(T )) ≤ W (T ) ≤ W (Pn) by Theorem 4.2. The result follows by noting

that W (T̄ ) = W (P̄n). 2

It is ready for giving the Nordhaus-Goddum-type inequality for the Wiener index.
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Theorem 4.4. Let G be a graph of order n ≥ 5, and Ḡ be its complement. Then

3(n
2 ) ≤ W (G) + W (Ḡ) ≤ n3+3n2+2n−6

6 .

Proof. The lower bound is immediate from W (G) + W (Ḡ) ≥ (ε(G) + 2ε(Ḡ)) + (ε(Ḡ) +

2ε(G)) = 3(n
2 ).

For the upper bound, it remains to consider the case diam(G) = diam(Ḡ) = 3 in

view of Lemma 4.1(1) and 4.3. Let si be the number of pair of vertices with distance

i in G, for i = 1, 2, 3, and s̄i be that in Ḡ. Then W (G) + W (Ḡ) =
∑3

i=1 i(si + s̄i) =

s1 + s̄1 + 2(s2 + s̄2 + s3 + s̄3) + s3 + s̄3 = 3(n
2 ) + s3 + s̄3. By Lemma 4.1(2), let Sp1,q1 be a

spanning subgraph of G and Sp2,q2 be that of Ḡ, where pj + qj = n for j = 1, 2. Hence,

s3 ≤ (p1 − 1)(q1 − 1) = p1q1 − n + 1 and s̄3 ≤ p2q2 − n + 1. Since piqi ≤ g(n) for i = 1

and 2, where g(n) = n2

4 if n is even, and otherwise n2−1
4 , we have s3 ≤ g(n)− n + 1 and

s̄3 ≤ g(n) − n + 1, and thus W (G) + W (Ḡ) ≤ 3(n
2 ) + 2(g(n) − n + 1). One can easy to

check that 3(n
2 ) + 2(g(n)− n + 1) ≤ n3+3n2+2n−6

6 if n ≥ 5. This completes the proof. 2

Note that the bounds are sharp. Obviously, the upper bound can be obtained on the

graph Pn. To see the lower bound is best possible, we construct a sequence of graphs.

Let Gn be graph of order n, which is obtained from C5 by replacing a vertex of C5 by

complete graph of order n− 4. It is easy to see that diam(Gn) = diam(Ḡn) = 2 and so

W (Gn) + W (Ḡn) = 3(n
2 ).
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