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Abstract

We consider topological indices I that are sums of f(deg(u), deg(v)), where u, v are adja-
cent vertices and f is a function. The Randić connectivity index, the 2nd Zagreb index or the
Platt number are examples for indices of this kind. In earlier work on topological indices that
are sums of independent random variables, we identified the correlation between I and the
number of edges of the molecular graph as the main cause for correlated indices. For random
graphs on a Poisson-distributed number of vertices, we show how I can be transformed to
be uncorrelated to the number of edges. More important, we give reason to assume that this
should not simply transform a linear to a non-linear dependence. A similar result holds for
zero-order indices, i.e. topological indices that are sums of f(deg(v)) as for example the 1st
Zagreb index.

1 Introduction

For quite some time it has been known that topological indices (graph invariants on molecular
graphs) exhibit considerable mutual correlation [1, 2]. This is a major problem when performing
structure-activity studies as the employed statistical methods may fail or give little meaningful
results on sets of correlated data. In addition, strong correlations among a set of topological
indices raise doubt whether these indices describe different and meaningful biological, chemical or
physical properties of molecules. Many topological indices also depend on the number of bonds in
a molecule, which is information that should better be coded spearately.

Principal component analysis (PCA) is sometimes used to obtain uncorrelated descriptors from
a set of correlated descriptors. By construction, the new set of descriptors is a linear combination
of the old ones. Hence, each new descriptor may be a combination of all previous descriptors,
which complicates model interpretability. Also, uncorrelated descriptors may still be non-linearly
related.

In an attempt to investigate the reasons for these correlations, we used random graphs [3] as
a model for chemical graphs and for topological indices of the form

IX(G) =
∑

{u,v}∈E

XuXv

where E is the edge set of the molecular graph G = (V, E) and X = {Xv | v ∈ V } is a set
of independent random variables with a common expectation E(X) [4, 5, 6]. We proved that
IX, IY, and I1 are necessarily dependent for independent sets of vertex properties X,Y with
E(X) , E(Y ) 6= 0. For E(X) = E(Y ) = 0 however these indices are uncorrelated. Here, I1

denotes a topological index with Xv = 1 for all v ∈ V , that is, I1 = |E|. In the first case,
these indices are thus correlated as a result of the graph invariant used, not as a result of similar
chemical properties.



While the random graph model we used in [6] encompasses graphs of arbitrary structure,
including chemical graphs, the notion of vertex (or atom) properties Xv that are independent of
the molecular graph is a serious abstraction from computational chemistry where atom properties
used for topological indices are a function of the graph or even the molecule.

In this paper, we use a special case of the random graph model used in [6]. In particular, the
number of vertices is a Poisson-distributed random variable N . For a fixed number of vertices
N = n, edges are chosen independently with a probability pn ∈ Θ(1/n) so that the expected
number of edges is a linear function of n. We use this to model an approximately linear relation
of bonds to vertices present in molecules. For example, homologous series of aliphatic or aromatic
hydrocarbons with n atoms contain n + c bonds for some constant c. Polyphenyls contain 7

6
n + c

bonds as each monomer adds 6 atoms and 7 bonds. On the other hand, there is some variation
in the number of bonds for a given number of atoms in a heterogenous set of molecules, which is
also true for the random graph model. Note however that this random graph model describes only
some specific aspects of chemical graphs, namely the average degree of a vertex and a variation in
the number of vertices and edges. Random graphs may not be connected or may contain vertices
of degree greater 4.

As a more significant difference we consider the vertex properties to be a function of the vertex
degree instead of being independent. Thus, our results are valid for topological indices such as the
Randić connectivity index, the second Zagreb index or the Platt number [7].

Since we discovered that topological indices that are correlated with I1 are also mutually
correlated within the setting of [4, 5, 6], we focus on the covariance between IX and I1. We show
how to make IX uncorrelated with I1 in a way that should not result in a non-linear dependence.
In section 7 we also consider zero-order indices, which include the first Zagreb index and the
zero-order Kier & Hall index.

2 Preliminaries

The random graph model is constructed in two steps. We shall first consider a fixed, then a
variable number of vertices. In the first step, we obtain random graph model G (n, pn). From here,
we obtain model G (N, pN ) by the use of expectation.

For a graph (V, E) on the vertex set V = {1, . . . , N} where N is a random variable let

1uv = 1{{u,v}∈E} =

{
1 if {u, v} ∈ E

0 else

be the indicator function for {{u, v} ∈ E}. For N fixed, let 1uv (u, v ∈ V ) be independent random
variables with P (1uv = 1 | N = n) = pn for some pn ∈ (0, 1). The space of random graphs G (n, pn)
can be identified with the distribution of (1uv)u,v∈V with respect to P (· | N = n), that is, all edges
are chosen independently with probability pn. We choose the edge-probabilities pn in a way such
that E|E| = α(n − 2) for a fixed parameter α > 0 as motivated in the introduction. For the
expected degree of a vertex follows

E(deg(v)) =
2E|E|

n

∼ 2α

The parameter α thus describes the branching of the graphs.
To let the number of vertices vary, let N be a Poisson-distributed random variable and G (N, pN )

a space of random graphs with distribution

P (G) = E(P (G | N)) =
∑

n

P (G|N = n)P (N = n)

To describe the vertex properties, let f : N
2 → R be a function and let

Xuv = f(deg(u), deg(v)) (2.1)
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be the properties of vertices u, v. We consider the topological index

IX = IX(G) =
∑

{u,v}∈E(G)

Xuv (2.2)

where G is a random graph. In section 3 we will write this as

IX =
∑
u<v

Xuv1uv (2.3)

which is better suited to employ the expectation operator.
In section 7, we also consider topological indices of the form

IX =
N∑

v=1

Xv

with Xv = f(deg(v)) for a function f .
We use the following notations throughout the text:

O(f) denotes a function g with g(x) ≤ cf(x) for all large x and a constant
c > 0

Xn
D
−→ X denotes that random element Xn converges to X in distribution
Pα denotes the Poisson distribution with parameter α.

3 Expectations for n fixed

In this section, we use the random graph model G (n, pn), that is, all expectation values are defined
via P (· | N = n).

To determine expectation values, we have to eliminate the dependence among Xuv and (1uv)u,v∈V

in (2.1). Therefore, we define the conditional expectation

δ
(i,j)

f,n = E

(
X12 | 112 ·

i+1∏
k=3

11k ·

j+1∏
l=3

12l = 1

)
(3.1)

Since 1uv (u, v ∈ V ) are independent and identically distributed, we have δ
(i,j)

f,n = δ
(j,i)

f,n .
Note that this definition does not depend on the choice of (u, v) = (1, 2) since all Xuv (u, v ∈ V )

have the same distribution. As we shall see in section 4, limn→∞ δ
(i,j)

f,n exists and is a function of

α if f does not grow too steeply. Thus, we may regard δ
(i,j)

f,n as almost constant for large n.

Lemma 1.

E(IX) = δ
(1,1)

f,n E|E|

Proof.

E(IX) =
∑
u<v

E(Xuv | 1uv = 1) pn by (2.3)

= δ
(1,1)

f,n E|E| by (3.1)

Lemma 2.

E(IXI1) =

[
δ
(1,1)

f,n

(
n − 2

2

)
pn + 2δ

(1,2)

f,n (n − 2)pn + δ
(1,1)

f,n

]
E|E|
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Proof. To dissect the sum

E(IXI1) =
∑
u<v

∑
u′<v′

E(Xuv1uv1u′v′)

according to |{u, v} ∩ {u′
, v

′}|, consider

Sk = {(u, v, u
′
, v

′) | u < v ∧ u
′
< v

′ ∧ |{u, v} ∩ {u′
, v

′}| = k}, 0 ≤ k ≤ 2

Then

|S0| =

(
n

2

)(
n − 2

2

)
(3.2)

|S1| = 6

(
n

3

)
(3.3)

|S2| =

(
n

2

)
(3.4)

(3.2) and (3.4) are obvious. To verify (3.3) let (u, v, u
′
, v

′) ∈ S1. Exactly two numbers are equal
as indicated in figure 1. Cases (a), (b) allow just one way to distribute three distinct numbers on
u, v, u

′
, v

′ while there are two ways for cases (c), (d). For symmetry reasons, E(Xuv1uv1u′v′) =

�

u
′

�

v
′

�

u
�

v

=

<

<

(a)

�

u
′

�

v
′

�

u
�

v

=

<

<

(b)

�

u
′

	

v
′




u
�

v

=

<

<

(c)

�

u
′




v
′

�

u
�

v

=

<

<

(d)

Figure 1: Possibilities for (u, v, u
′
, v

′) ∈ S1

E(X12112113) for all (u, v, u
′
, v

′) ∈ S1. Hence, we get

E(IXI1) = |S0|E(X12112134)

+ |S1|E(X12112113)

+ |S2|E
(
X121

2

12

)
= |S0|E(X12 | 112 = 1) p

2

n

+ |S1|E(X12 | 112113 = 1) p
2

n

+ |S2|E(X12 | 112 = 1) pn

(3.5)

With (
n

3

)
=

(
n

2

)
n − 2

3

and (3.2)-(3.4), (3.5), we have

E(IXI1) = δ
(1,1)

f,n E|E|

(
n − 2

2

)
pn

+ 2δ
(1,2)

f,n E|E|(n − 2)pn

+ δ
(1,1)

f,n E|E|

Remark. With f ≡ 1, lemma 1 and the help of Mathematica it follows Var(I1) = E|E|(1 − pn),
as it should be.
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4 Convergence of δ
(i,j)
f,n

In this section, we prove a result on the convergence of δ
(i,j)

f,n for n → ∞. We need this to
generalize the results in section 3 for a Poisson-distributed number of vertices and to justify the
main conclusion of this paper.

Recall that for random vectors Xn, X in R
d holds

Xn
D
−→ X

iff
E(f(Xn)) → E(f(X))

for all bounded and continuous functions f : R
d → R

d. This does not hold for arbitrary unbounded
functions f . Therefore, we require that f is bounded by an exponential function in theorem 3.
This does not have to be the most general restriction but it is sufficient to treat currently used
topological indices.

Theorem 3.

If |f(x, y)| ≤ b
x+y for a constant b > 0 and limn→∞pnn = α, then for all i, j ∈ N

lim
n→∞

δ
(i,j)

f,n = E(f(i + P1, j + P2))

where P1, P2 are independent and Pα-distributed random variables.

Proof. First, we show that the claims holds for bounded functions. Let

S
(1)

n,i = i +

n∑
k=i+2

11k

and

S
(2)

n,j = j +

n∑
k=j+2

12k

By definition (3.1),

δ
(i,j)

f,n = E

(
X12 | 112 ·

i+1∏
k=3

11k ·

j+1∏
l=3

12l = 1

)

= E

(
f

(
S

(1)

n,i , S
(2)

n,j

))
= E(f(Sn)) (4.1)

if we write Sn =
(
S

(1)

n,i , S
(2)

n,j

)
. Since pnn → α, Poisson’s limit theorem gives

n∑
k=i+2

11k
D
−→ Pα (n → ∞)

The function f : N
2 → R can be extended to a continuous function f : R

2 → R in an arbitrary
way. Hence, the continuous mapping theorem gives

f(Sn)
D
−→ f(i + P1, j + P2) (n → ∞)

For all bounded and continuous functions f
∗ : R

2 → R follows by (4.1)

δ
(i,j)

f∗,n → E(f∗(i + P1, j + P1)) (n → ∞) (4.2)
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To prove (4.2) for arbitrary functions f with |f(x, y)| ≤ b
x+y we cut f off above a limit to divide

f into a bounded and an unbounded part. We show that the unbounded part tends to zero as the
limit tends to infinity.

To do so, let

cm(x) =

{
x if |x| < m

0 else

and

c̃m(x) =

{
0 if |x| < m

x else

Then

|E((c̃m ◦ f)(Sn)) | = |E
(
f(Sn)1{f(Sn)≥m}

)
|

≤ E

(
f(Sn)

f(Sn)

m

)

≤
1

m

E

(
b
2S

(1)
n,i

+2S
(2)
n,j

)

=
1

m

b
2i

E
(
b
2·112

)n−(i−1)

b
2j

E
(
b
2·112

)n−(j−1)

since S
(1)

n,i and S
(2)

n,j are independent

=
b
2(i+j)

m

·
(1 + b

2
pn)2n

(1 + b
2
pn)i+j−2

= O(1/m) (4.3)

since pnn → α. Thus,

lim
n→∞

δ
(i,j)

f,n = lim
m→∞

lim
n→∞

E(f(Sn))

by (4.1)

= lim
m→∞

lim
n→∞

[E((cm ◦ f)(Sn)) + E((c̃m ◦ f)(Sn))]

= lim
m→∞

[E((cm ◦ f)(i + P1, j + P2)) + O(1/m)]

by (4.2) and (4.3)

= E(f(i + P2, j + P1))

by the convergence theorem of Lebesgue.

5 Expectations for Poisson-distributed N

In this section, we use the random graph model G (N, pN ). Hence, the number of vertices N is
not constant anymore. As we need the results of section 3 here, we denote by En the edge set of
a random graph in G (n, pn), i. e. on a fixed number of vertices, whereas E is the edge set of a
graph in G (N, pN ).

To circumvent dividing by zero and other technical problems we require that N ≥ 2 in this
section. Therefore, N is a random variable with

P (N = n) =

{
βn−2

(n−2)!
e
−β if n ≥ 2

0 else
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for β > 0. In the strict sense, N is thus not Poisson-distributed, but N − 2 is. Since E(N) =
E(N − 2) + 2 = β + 2, the parameter β describes the expectation of N .

For N = n and α ∈ (0, 3) we define the edge-probabilities pn as

pn = α

n − 2(
n
2

)
so that E|En| = α(n − 2). This results in the useful properties

E|E| =
∑
n≥2

E|En|P (N = n)

=
∑
n≥3

αβ

β
n−3

(n − 3)!
e
−β

= αβ

(5.1)

and
E|En|P (N = n) = E|E|P (N = n − 1) (5.2)

Thus, E|E| is the product of a parameter that is related to the average degree of a vertex (see
section 2) and a parameter related to the number of vertices in the graph.

With lemma 1 and (5.2) we get

Lemma 4.

E(IX) = E

(
δ
(1,1)

f,N+1

)
E|E|

The generalization of lemma 2 requires more effort.

Lemma 5.

E(IXI1) = E|E|
[
E|E|E

(
δ
(1,1)

f,N+2

)
+ (1 − 3α)E

(
δ
(1,1)

f,N+1

)

+4αE

(
δ
(1,2)

f,N+1

)
+ O(1/β)

]

Proof. By lemma 2 and (5.2), we have

E(IXI1) = E(E(IXI1 | N))

= E|E|
∑
n≥3

[
δ
(1,1)

f,n

(
n − 2

2

)
pn + 2δ

(1,2)

f,n (n − 2)pn + δ
(1,1)

f,n

]

P (N = n − 1)

We deal with the three summands separately using

α(n − 3)P (N = n − 1) = E|E|P (N = n − 2)(
n − 2

2

)
pn = α(n − 3) − 3α + O

(
1

n − 2

)

(n − 2)pn = 2α + O

(
1

n − 2

)

and

∑
n≥3

δ
(i,j)

f,n O

(
1

n − 2

)
P (N = n − 1) = O(1/β)
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which holds since δ
(i,j)

f,n converges by theorem 3. Hence, we get

E(IXI1) = E|E|


E|E|

∑
n≥4

δ
(1,1)

f,n P (N = n − 2)

− 3α

∑
n≥3

δ
(1,1)

f,n P (N = n − 1) + O(1/β)

+ 4α

∑
n≥3

δ
(1,2)

f,n P (N = n − 1) + O(1/β)

+
∑
n≥3

δ
(1,1)

f,n P (N = n − 1)




= E|E|
[
E|E|E

(
δ
(1,1)

f,N+2

)
+ (1 − 3α)E

(
δ
(1,1)

f,N+1

)

+ 4αE

(
δ
(1,2)

f,N+1

)
+ O(1/β)

]

With lemma 4 follows

Corollary 6.

Var(I1) = E|E|(1 + α + O(1/β))

6 Covariance with I1

Any topological index IX of the form (2.2) can be made uncorrelated to E|E| = I1 by adding a
suitable constant: If we write

I
X̃

=
∑

{u,v}∈E(G)

(Xuv + c) (6.1)

we have
0 = Cov

(
I
X̃

, I1

)
= Cov (IX, I1) + cVar(I1)

iff

c = −
Cov (IX, I1)

Var(I1)
(6.2)

However, this does not make any sense if (6.1), (6.2) merely transform a linear into a non-linear
dependence. Figure 2 illustrates how a non-linear dependence may appear. In this example
however Cov (IX, I1) is not zero if E(I1) is in a region where the curve rises or falls. We therefore
require that Cov

(
I
X̃

, I1

)
= 0 for different values of β, or equivalently, that c does not depend on

β. It will turn out that this can be achieved approximately, which will precisely be stated in terms
of a limit of c for β → ∞.

With lemma 1, 2 can be shown that

Cov (IX, I1)

Var(I1)
= δ

(1,1)

f,n (1 − 2α) + 2δ
(1,2)

f,n α + O(1/n)

holds for every fixed n, hence (6.2) does not much depend on the number of vertices in this case.
On the other hand, if the number of vertices is a Poisson-distributed random variable N , the

results of section 5 show that Cov(IX,I1)

Var(I1)
contains the product

E|E|E
(
δ
(1,1)

f,N+2
− δ

(1,1)

f,N+1

)
(6.3)
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Figure 2: A non-linear dependence

If the convergence speed of δ
(1,1)

f,n is not known, nothing can be proved about the behavior of (6.3)
for different values of β.

Therefore, we define

εn = δ
(1,1)

f,∞ − δ
(1,1)

f,n (6.4)

with δ
(1,1)

f,∞ = limn→∞ δ
(1,1)

f,n and

X̂uv = Xuv + εn (6.5)

so that δ
(1,1)

f̂ ,n
= δ

(1,1)

f,∞ for all n and thus E

(
δ
(1,1)

f̂ ,N+k

)
= δ

(1,1)

f,∞ for all k. Then, product (6.3) is

always zero and

Cov
(
I
X̂

, I1

)
Var(I1)

=
(1 − 3α)δ

(1,1)

f,∞ + 4αE

(
δ
(1,2)

f̂ ,N+1

)
+ O(1/β)

1 + α + O(1/β)
(6.6)

by lemma 4, 5 and corollary 6. This still depends on β, but only to a small extent. More precisely:
limβ→∞ c exists and is finite. Note that β → ∞ iff E(N) → ∞.

As a result, we get

Theorem 7.

For a random graph in G (N, pN ), let

X̂uv = Xuv + εN

X̃uv = X̂uv + c

with

c = −
Cov

(
I
X̂

, I1

)
Var(I1)

and let εn be defined according to (6.4). Then we have:

1. I
X̃

is uncorrelated to I1

2. limβ→∞ c exists and is finite

Proof. The first claim follows from (6.1), (6.2). The only assertion left to show is that E

(
δ
(1,2)

f̂ ,N+1

)
converges for β → ∞. By theorem 3 and (6.3), (6.5), δ

(1,2)

f̂ ,n
converges. Hence, there is for any
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ε > 0 an nε such that
∣∣∣δ(1,2)

f̂ ,n+1
− δ

(1,2)

f̂ ,∞

∣∣∣ < ε for all n > nε and

lim
β→∞

∣∣∣E(δ(1,2)

f̂ ,N+1

)
− δ

(1,2)

f̂ ,∞

∣∣∣ < lim
ε→0

lim
β→∞

P (N ≤ nε) O(1) + εP (N > nε) = 0

Thus, the right hand side of (6.6) converges.

7 Zero-Order Indices

As a second application, we now consider topological indices of the form

IX =
N∑

v=1

Xv

with Xv = f(deg(v)) for a function f with |f(x)| ≤ b
x for a constant b > 0. Examples for indices

of this form are the first Zagreb group index or the zero-order Kier & Hall index.
It follows similarly to the results of (6.1), (6.2) that I

X̃
with X̃v = Xv + c is uncorrelated to

I1 = N iff

c = −
Cov (IX, I1)

Var(I1)
= −E(X1) (7.1)

This holds for arbitrary random variables N . If we write δf,n = E(X1 | N = n), we have c =
−E(δf,N ) and it follows as in theorem 7 that limβ→∞ c exists and is finite.

Theorem 8.

For the zero-order index I
X̃

with X̃v = Xv + c and c defined according to (7.1) holds:

1. I
X̃

is uncorrelated to I1

2. limβ→∞ c exists and is finite

8 Discussion

Theorem 7 shows that a topological index IX of the form (2.2) can be transformed to an index
I
X̃

that is uncorrelated to I1 = E|E| within model G (n, pn). A similar assertion holds for zero-
order indices. This transformation should not introduce a non-linear dependence as illustrated in
figure 2. This is formally stated by (6.6) and the fact that c does not depend on β for β → ∞,
or equivalently, for E(N) → ∞. Thus, the dependence among IX and E|E| is much reduced.
However, the number of bonds may still influence the variance of I

X̃
.

The values εn introduced in (6.4) are needed to prove assertion (2) of theorem 7. If, in a

practical application, δ
(1,1)

f,n converges rapidly or if the size of the molecules in the data set does

not vary much it may not be necessary to transform Xuv to X̂uv since (6.3) will not change much
either. In this case, the same is true for c.

To show the necessity of this transformation, it still remains to show when IX and E|E| are
correlated within this setting, as it was shown for independent vertex properties with non-zero
expectation [4, 5, 6]. Further, a computer experiment with chemical data is needed to see the
difference this transformation makes to the correlations among topological indices of the kind we
consider here.
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