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Abstract. The five Platonic (regular) polyhedra may be ordered by various numerical 

indicators according to their complexity. By using the number of their vertices, the solid 

angle, and information theoretic indices one obtains a consistent ordering for the Platonic 

polyhedra. For the thirteen semiregular Archimedean polyhedra these criteria provide for 

the first time an ordering in terms of their complexity. 

 

Introduction 

 Polyhedral hydrocarbons (CH)2k with k = 2, 4, and 10 are valence isomers of 

annulenes. Only three of the five Platonic polyhedra fulfill the condition of corresponding 

to cubic graphs, whose vertices of degree three can symbolize CH groups. Eaton’s 

cubane (k = 4) is stable despite its steric strain, and its nitro-derivatives are highly 

energetic materials. Paquette’s synthesis of dodecahedrane (k = 10) was a momentous 

achievement, equaled soon afterwards by a different synthesis due to Prinzbach. 

Tetrahedrane (k = 2) is unstable but Maier’s tetra-tert-butyltetrahedrane is a stable 

compound. For details and some literature data, see ref.1 Other chemically relevant 

references are collected in the final section of this article. 



The complexity concept can be treated scientifically by listing the factors that 

influence it.2-7 For graphs and other similar mathematical concepts, these factors include 

branching and cyclicity. The tetrahedron can be viewed as a three-dimensional 

geometrical polyhedron or as the K4 graph (the complete graph with four vertices or the 

trivalent cage with girth 3). The order of the symmetry group of the tetrahedron graph is 

higher than that of the tetrahedron as a polyhedron. In the present study we shall discuss 

polyhedra as geometrical objects in the three-dimensional Euclidean space. 

 The five regular polyhedra have congruent faces that are regular polygons. When 

more than one type of regular polygons meets at a vertex, one obtains semiregular 

polyhedra. These are the 13 Archimedean polyhedra (two of which – the snub polyhedra 

– are chiral, leading in 3D space to enantiomeric solids), together with the infinity of 

regular prisms and antiprisms (having two parallel poly-n-gons connected by n squares or 

2n triangles, respectively), and the few elongated square gyrobicupolas. All Platonic and 

Archimedean polyhedra are vertex transitive. Neither the two chiral Archimedean 

polyhedra, nor prisms, antiprisms, and gyrobicupolas will be considered in detail here. 

Results 

 Several recent studies have been published on the complexity of regular 

polyhedra, either viewed graph-theoretically or geometrically.8-11 Together with earlier 

studies on related topics,12-15 these papers produced results that allow an ordering of the 

regular (Platonic) polyhedra according to various numerical criteria. We add to these 

criteria in the present study another one, termed “sphericity”: how closely the polyhedra 

(viewed as geometrical objects) approach a sphere, again according to various 

quantitative measures. Just as radians measure angles as the ratio between the length of 

an arc and the radius of the circle centered at the meeting points of the two straight lines 

subtending that arc (1 radian = 57.296º), solid angles are measured in steradians defined 

as the ratio between the area of the sphere delimited by the planes meeting at the center 

of the sphere, and the square of the sphere radius.  [A different definition, which will not 

be used here, does not consider how “pointed” is a vertex, but looks from the center of a 

unit sphere at the angle subtended by a surface’s projection onto the sphere. Thus, the 

projection of a face of a cube centered at the origin is the whole area of the sphere 

- 138 -



divided by the number of cube faces, i. e. 4π/6 = 2.094 steradians, and for a regular 

tetrahedron a similar calculation yields 4π/4 = π = 3.14 steradians].16 

 Several intuitive measures of sphericity are provided by the solid angle (θ) 

(measured in steradians or in degrees), or by the ratios between the radius of an inscribed 

(r) or circumscribed sphere (R) and the length (L) of an edge of the regular polyhedron. 

The last two ratios (r/L and R/L) can be calculated without difficulty. For the solid angle, 

however, one must use formulas that can be proved with a small effort.17 

 Thus, for a solid angle formed by three incident edges defining three planar angles 

αi (i = 1, 2, and 3) we have:  

cos (θ/2) = [2 – Σi sin2 (αi/2)] / 2Πi cos (αi/2)], or 

 For the maximal solid angle formed by four incident lines of length L [defining 

four planar angles αi (i = 1, 2, 3, and 4) with their endpoints resulting in a quadrilateral 

that is inscribable in a circle] we have: 

cos (θ/2) = [2 – Σi sin2 (αi/2) – 2Πi sin (αi/2)]/ 2Πi cos (αi/2)].  

 When a incident edges belonging to poly-n-gons meet at a vertex forming equal 

planar angles α, the maximal solid angle may also be calculated from the formula: 

θ = 2π – 2a arcos[cos (π/a) / cos(α/2)] = 2π – 2a arcos[cos (π/a) / sin(π/n)]. 

 For the five Platonic polyhedra we may also use other relationships. Their solid 

angle θ may be computed with the aid of the dihedral angles, δ, which may be found from 

a related relationship. 

 sin(δ/2) = cos(π/a) / cos(α/2) = cos (π/a) / sin(π/n) 

 θ = aδ – (a – 2)π 

 Finally, we denote by γ the angle between two lines emerging from the center of 

the polyhedron: one line connects it to a vertex, and the other line is normal to a face 

having this vertex.  

 We present in Table 1 the five Platonic polyhedra and the thirteen Archimedean 

semiregular polyhedra with a few characteristic details, including the number F of faces, 

V of vertices, and E of edges.18 The truncated cuboctahedron is also called the great 

rhombicuboctahedron, and the truncated icosidodecahedron is also called the great 

rhombicosidodecahedron, and these last names are preferred, therefore their smaller 

namesakes are named with the “small” prefix. The symbol indicates the size and the 
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number of regular polygons that are the faces of the polyhedron, e. g. polyhedron 16 

(small rhombicosidodecahedron) with the symbol 320 430 512 has 62 faces: 20 triangles, 30 

quadrilaterals and 12 pentagons. 

 One may check that Euler’ relationship is satisfied in all cases from Table 1: 

V + F = E + 2 

 Further numerical characteristics of the five Platonic polyhedra and the thirteen 

Archimedean polyhedra are presented in Tables 2 and 3. 

 

Ordering of Platonic and Archimedean polyhedra according to their complexity 

 The two pairs of dual regular polyhedra (cube and octahedron, dodecahedron and 

icosahedron) have the property that a member of the pair is converted into the other 

member by connecting centers of faces. For each pair of dual regular polyhedra, the 

number of edges is the same. Also the ratios of the inscribed and circumscribed spheres 

are equal for the two pairs of dual Platonic polyhedra. The names of the regular 

polyhedra are derived from the number of their faces, but it would be misleading to 

consider that this number orders Platonic polyhedra according to their complexity. One 

can see that the sphericity is not increasing with the number of faces, but with the number 

of vertices and with the other characteristics (sum of planar angles at a vertex, solid angle 

at each vertex, and the angle γ). The duals of semiregular polyhedra are Catalan 

polyhedra, and they will not be discussed here. One can note in Table 1 that there are also 

two pairs of Archimedean solids which share triplets of the numbers V, E, F: the 

truncated cube and the truncated octahedron form one such pair; the truncated 

dodecahedron and the truncated icosahedron form another pair.  

 In Table 1 one can also see the sum of planar angles at each vertex. On 

subtracting this sum from 360º = 2π steradians, one obtains the deficit of the solid angle. 

According to the theorem of Descartes, the sum of these deficits for all vertices equals 4π 

steradians.  

The sum of planar angles has the same high degeneracy as the number of vertices. 

However, the number of edges has a lower degeneracy: it is not able to discriminate 

between the pairs of dual polyhedra and truncated analogs, but otherwise also this 
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numerical indicator E orders the Platonic and Archimedean polyhedra according to their 

numbers of vertices, not their numbers of faces.  

 A highly discriminating and reliable measure of sphericity of polyhedra is the 

solid angle. It has no degeneracy among the 16 polyhedra from Table 1 that have values 

for their solid angle (we do not have these values for the two chiral snub polyhedra).The 

solid angle θ and the sum of planar angles at each vertex have a non-linear correlation 

(Fig. 1). If a linear correlation is attempted, the r2 value is modest: r2 = 0.856. Thus, 

Platonic and Archimedean polyhedra can be ordered according to their sphericity in a 

unique sequence based on the solid angle θ of their vertices. It will be observed from 

Table 1, which is ordered according to increasing numbers of edges, that the new 

ordering according to θ leads to an inversion between Archimedean polyhedra 13 and 14, 

and intercalates Archimedean polyhedra 6 and 7 between the Platonic polyhedra 3 and 4. 

 A plot of the number of edges in the Platonic and Archimedean polyhedra versus 

the solid angle is presented in Fig. 2. It will again be seen that this is nonlinear variation, 

which has an even smaller coefficient (one obtains r2 = 0.734 for a linear correlation).  
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Fig. 1. Plot of the solid angle (steradians) versus the sum of planar angles for polyhedra. 
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Fig. 2. Plot of the number of edges versus the solid angle at a vertex for polyhedra. 

 

 Both in Fig. 1 and Fig. 2 one can see that unlike the solid angle that has no 

degeneracy, the sum of planar angles and the number of edges have several degenerate 

values, as observed also in Table 1. 

 Three other geometric descriptors in Table 1 measure the relative sphericity 

within the 0 to 1 range as a ratio between one-, two-, and three-dimensional parameters of 

the polyhedron and the corresponding circumscribed sphere. The first of these measures, 

which might be called radial sphericity, is defined as the ratio of the radii of the inscribed 

and circumscribed sphere, r/R. While generally increasing with sphericity, this descriptor 

shows degenerate values for the two pairs of dual Platonic bodies. The ordering of the 

Archimedean polyhedra that this measure provides differs with four inversions from that 

based on the solid angle, with two of the inversions corresponding to polyhedra having 

the same number of edges. Surface sphericity (Apolyhedron/Asphere) and volume sphericity, 

(Vpolyhedron/Vsphere), in contrast, are nondegenerate and increase in a regular manner within 

the 0 to 1 range and follow very closely the ordering produced by the solid angle with a 

single inversion at polyhedra # 13 and # 14. All measures constructed classify the great 

rhombicosidodecahedron as the most spherical one, with the radial, surface, and volume 

sphericity values, equal to 0.983, 0.963, and 0.898, respectively.  
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 The last column in Tables 2 and 3 shows the values of the polyhedra information 

content (Ifd). The latter is defined on the distribution of polyhedra vertices into the 

respective faces. More specifically, this is a distribution of polyhedra vertices into 

individual polygons into which the polyhedron is considered decomposed. For example, 

the cuboctahedron with eight triangular and six quadratic faces is characterized by the 

distribution of 48 (not 12!) vertices: Ifd(cuboctahedron) = 48lb48 – 8x3lb3-6x4lb4 = 

182.0 bits, where lb stands for the logarithm at a base two for measuring information in 

binary units. The information sphericity measure induces an Archimedean polyhedra 

ordering very close to that produced by the solid angle. The single exception shows # 11 

(snub cube) as more spherical than # 12 and 13 (icosidodecahedron and truncated 

cubooctahedron, respectively). For the Platonic bodies however, the ordering produced 

differs from the solid angle ordering and matches the one of Bonchev’s 2-D complexity 

measures. 

 

Discussion of the results 

 In a series of papers using resistance distances in graphs, Lukovits, Nikolić and 

Trinajstić have compared the ordering of the graphs corresponding to the five Platonic 

solids (or the ordering of their Schlegel diagrams), concluding that the number V of 

vertices provides the best natural order, in agreement with the resistance distance 

between all pairs of vertices (polyhedra 1<2<3<4<5). Three other criteria based on 

topological indices provide the same ordering: Wiener’s index, Hosoya’s Z-index and 

Randić’s connectivity index. Other criteria have degenerate values for the two pairs of 

dual polyhedra (cube/octahedron and icosahedron/dodecahedron): the number of edges, 

of spanning trees, and Estrada’s first-order edge-connectivity index.  

 Bonchev has discussed in much detail this ordering of the five Platonic polyhedra 

in the context of complexity, arriving at a different conclusion: except for the total walk 

count, many criteria investigated by Bonchev point out that the icosahedron (with the 

highest vertex degree) and not the dodecahedron appears to be the most complex, 

yielding the following ordering: 1<3<2<5<4. 

 Both of the above comparisons were made for the Platonic polyhedra viewed as 

graphs or as Schlegel diagrams. The present discussion, however, takes into consideration 
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the geometry by basing the ordering of both Platonic and Archimedean polyhedra in a 

combined set on the solid angle of their vertices. One should note that these polyhedra are 

vertex transitive in the Euclidean three-dimensional space, except for the antipodes in the 

two pairs of enantiomeric snub Archimedean solids which are not superimposable 

(although their solid angles have the same value for each enantiomeric pair). 

 In conclusion, the solid angle of vertex-transitive regular and semiregular 

polyhedra viewed as geometrical objects can be used for ordering such polyhedra 

according to their sphericity, along with the newly introduced surface and volume 

sphericities, and the information sphericity index. For the five Platonic polyhedra, this 

geometrical ordering according to their sphericity agrees in some cases with the graph-

theoretical ordering based on a few topological indices such as the Wiener, Randić, and 

Hosoya indices, but in many other cases the graph-theoretical ordering for complexity 

and the geometrical ordering for sphericity differ, as argued by Bonchev. Apparently, the 

ordering for Archimedean polyhedra according to their sphericity has not yet been 

discussed in the literature. This study demonstrates that the four sphericity measures 

mentioned above order in a similar way the thirteen Archimedean bodies from 

cubooctahedron and truncated tetrahedron to snub dodecahedron and large 

rhombicosidodecahedron. 

 

Selected bibliography for “chemistry and Platonic and Archimedean polyhedra” 

 In addition to Platonic solids as valence isomers of annulenes mentioned in the 

introductory paragraph, inorganic compounds also have such structures. Only a few will 

be selected in what follows,19 and then several chemical examples with Archimedean 

polyhedral structures will be presented. 

 Tetrahedron. The white allotropic form of phosphorus contains tetrahedral P4 

molecules, which persist in all three phases (solid, liquid, and vapor up to 800º C). 

Interestingly and counter-intuitively, its conversion into a cube-shaped P8 molecule is 

disfavored both enthalpically and entropically. Arsenic and antimony also are known as 

As4 and Sb4 molecules. Polynuclear transition metal carbonyls with Co, Ir, Fe, Re 

tetrahedral clusters have been identified. Boron atoms in the chloride (BCl)4 are 

connected tetrahedrally. 
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 Cube. In addition to cubane, Si, Ge, and Sn analogues have been reported. 

Transition metals such as nickel connected to phosphines give rise to empty cubes and 

cooper to cube cages with a sulfur atom in the center and other external ligands. The 

nitrogenase enzymes contain two interpenetrating tetrahedra of iron and sulfur atoms 

(Fe4S4) arranged alternately at the corners of a cube. Many other such systems are known. 

 Octahedron. Octahedral cages and clusters exist in Rh and Co carbonyls, and 

many transition metal halides M6X8 or M6X12 with M = Zr, Nb, Ta, Mo, QW and Re. 

Only a few boranes and carboranes have octahedral structures: (BH)6
2– and B4C2H6. 

 Icosahedron. In contrast to octahedral molecules, icosahedral ones play a 

dominant role in boron chemistry, including the most common (BH)12
2– dianion and the 

three isomeric carboranes B10C2H12. Viral proteins that form capsids (virus coats) form 

quaternary structures (supramolecular assemblies) with icosahedral structure, e. g. in 

human poliovirus. 

 Dodecahedron. This structure achieved in Paquette’s and Prinzbach’s spectacular 

syntheses of dodecahedrane is not common for inorganic compounds. However, in 

crystallography it appears as splendid crystals of pyrite. 

 Archimedean polyhedra. To start with organic compounds, an early review by 

Schultz was published in 1965, before dodecahedrane or buckminsterfullerene were 

synthesized, and listed several geometric characteristics of polyhedra and regular prisms, 

including the total angular strain per carbon atom, expressed in angle degrees.20 A more 

recent review by Earley lists strain energies of polyhedranes (CH)2k with k = 2, 3, 4, 5, 6, 

8, 10, and 12, expressed in kcal/mol per carbon atom, and cites relevant references. Strain 

energies per carbon atom (as angle and kcal/mol) are: for tetrahedrane (CH)4, 254º, 35.4; 

cubane (CH)8, 106º, 19.8; dodecahedrane (CH)20, 9º, 2.2; and truncated octahedron 

(CH)24, 77º, 8.6; strain energies are also given for the Si, Ge, and Sn analogues.21 

 Two enticing synthetic hydrocarbon targets are the valence isomers of (CH)12 

with angular strain 88º (with one more cyclopropane ring than the known diademane, 

which rearranges easily to the unsaturated triquinacene), and (CH)24, having structures of 

a truncated tetrahedron and truncated octahedron, respectively, both with lower angular 

strain than cubane. By contrast, the truncated cube (CH)24 has a slightly higher total 

angular strain, 110º because it has six octagons and eight triangles. 
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 The most important chemical structure corresponding to an Archimedean 

polyhedron is buckminsterfullerene, C60, whose structure corresponds to the truncated 

icosahedron. The 1996 Nobel Prize for Chemistry was awarded to Curl, Kroto, and 

Smalley for its discovery. In addition to graphite and diamond, fullerenes, nanotubes and 

nanocones – nanohorns constitute new carbon allotropes, and a wide area of research has 

been opened in an unsuspected vast field. The literature is too vast to cite, but relevant 

books and reviews are quoted in a recent book chapter.22 We shall mention only two 

groups of contributors to this topic: Krätschmer and Huffman who prepared for the first 

time larger amounts of C60,23 and Scott who designed a rational synthesis of C60.24,25 

Also, early speculations on C60 should be mentioned.26-28 

 A paper by Fowler and coworkers extends the notion of d-codes to polyhedra 

including all Platonic and Archimedean polyhedra, and discusses applications to 

fullerenes and carboranes.29 Although not involving a regular or semiregular polyhedral 

structure, mention may be made of another paper by Fowler et al. which gives results of 

theoretical calculations for small hydrogenated fullerenes C24H2m:30 the authors found 

that one C24H12 isomer with two parallel hexagons and all hydrogens attached to the 

carbons shared by three pentagons (but not by pentagons and hexagons) has an 

exceptional stability. This agrees with calculations on “pillow” partly hydrogenated 

fullerenes.31 

 Cuboctahedral boron structures have been found in several metal borides MB12 

with M = Sc, Ni, Y, Zr, Hf, W.19 

 One paper of Coulombeau and Rassat, and two papers of Schleyer and coworkers 

should be mentioned: in the first one, vibrational frequencies are calculated for regular 

and semiregular polyhedral (CH)2k systems;32 in the second one, nucleus-independent 

chemical shifts for such molecules are calculated,33 and in the third various “sea-urchin” 

carborane structures are predicted, some of which have relevant polyhedral structures.34 

 Returning to organic compounds with the structure of regular polyhedra, this 

section will be concluded with bibliography on tetrahedral (CH)4 derivatives,35 cubane,36  

and “the Mount Everest of alicyclic chemistry” dodecahedrane.37,38 Finally, a list of 

articles will be included on perhydro-buckminsterfullerene or buckminsterfullerane, and 

its perhalo-derivatives (CX)60.39-45 
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