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Abstract-The polygonality, n, and the connectivity, p, are topological indices that are rigorously 
defined for the polyhedra through the Schläfli relation. The ordered pair of numbers (n, p) 
constitute the Schläfli symbol for a polyhedron. It has recently been discovered that the Schläfli 
indices, although not rigorously defined for extended structures through a Schläfli-type relation, 
are nonetheless computable for the units of pattern described by extended structures. These 
indices can be used to define a topology map of the polyhedra and extended structures. Such a 
topology map is useful in one sense for identifying the location of a structural pattern and its 
relation to other structures. In the present paper, a methodology is outlined for the computation of 
Schläfli indices for discrete molecules. An aufbau process is used to create the fullerene and 
graphene structures from molecular precursors in a continuous fashion, the topology indices of 
the various intermediate structures to the fullerene icosahedron and the graphene sheet are traced 
with a quadratic fit and are thus shown to form ordered pairs of a continuous function in n and p 
that is internally consistent. Such topological indices of molecules complement those indices that 
have already been formulated as molecular descriptors in the burgeoning field of molecular graph 
theory. The role that the Schläfli symbols of discrete molecules might play in the identification of 
structure-activity relationships is briefly discussed. 
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1. Introduction 

Euler's relation for the polyhedra, shown as Equation 1 below, marks the origin of 

the discipline of topology. [1] This relation between the number of vertices, V, 

edges, E, and faces, F, of convex polyhedra holds for any division of a sphere into 

polygons. 

 

(1)     V - E + F = 2 

 

Such a topological relation provides an organizing principle for the study of 

structures, both discrete and extended, as will be discussed below. [2] 

 The equation can be defined, alternatively, in terms of the relationship 

between the primary topological indices of the polyhedra; V, E and F, and the 

secondary topological indices, the polygonality, and the connectivity. The 

polygonality, n, refers to the weighted average number of sides of the polygonal 

faces of a polyhedron, and the connectivity, p, refers to the weighted average 

connectivity of the vertices of a polyhedron. There are two topological identities 

that establish the connection between the secondary and primary topological 

indices. We can note that each edge of a polyhedron is shared by two faces, 

therefore we can write nF = 2E. This relation simply states that the product of the 

averaged polygonality of a polyhedron and the number of faces of the polyhedron 

is just equal to twice the number of edges. Similarly, we can note that each edge 

terminates at two vertices of a polyhedron, the corresponding relation therefore 

can be written as pV = 2E. This identity simply states that the product of the 

averaged connectivity of the vertices of a polyhedron and the number of vertices 

of the polyhedron is just equal to twice the number of edges. These latter two 

topological identities can be substituted into Equation 1 to obtain Equation 2, the 

Schläfli relation for the polyhedra: [3] 
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The Schläfli relation establishes a rigorous connection between the secondary 

topological indices, n and p, and the primary topological indices, V, E and F; for 

the convex polyhedra. One value of this connection lies in the fact that the 

averaged polygonality, n, and the averaged connectivity, p, can be computed not 

only for the polyhedra, but such parameters can be computed for fully two-

dimensional and three-dimensional patterns, as well, through the identification of 

the Wells point symbol for the polyhedron or network. [4] A topology map, such 

as that shown in Figure 1 below, is used to identify the relative positions and 

identities of the innumerable discrete polyhedra and extended structures to which 

the Schläfli indices can be applied. [5] 

 

 
 

Figure 1: A topology map of the regular polyhedra and extended structures. 
 

This topology map is written for the identities and locations of only the 

regular structures and can be magnified and extended indefinitely for inclusion of 

the semi-regular and irregular structures, as well. Interestingly, there is a 
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corresponding Euler relation for the cell analogous to the Euler relation for the 

sphere. [6] A cell is a topological concept, like the sphere, which involves the 

division of the plane into fused polygons in which some of the edges form a 

boundary. In the sphere, there are no such bounded edges. The Euler relation for 

the cell is shown in Equation 3: 

(3)     V - E + F = 1 

 

The characteristic for the cell is just 1, where the characteristic for the 

sphere is 2. This is because the cell, in any of its innumerable manifestations, has 

one less face; the infinite bounded face, than does the division of a sphere into 

polygons. A cell can be envisioned, in one sense, as a molecular Schlegel diagram 

in which a discrete molecule, such as a hydrocarbon, has connections drawn about 

all the 1-connected atoms and thus is a completely polygonalized structure when 

including adumbrated polygons that may already exist in the structure. The 

drawing of connections about the 1-connected atoms is said to be an operation of 

polygonalizing the discrete molecule, this means dividing up the discrete molecule 

into polygonal compartments for the purpose of computing a polygonality index. 

 The present communication extends the concept of the Schläfli symbol for 

discrete polyhedra and extended structures to the vast area of discrete molecular 

structures as topological cells. A molecular polygonality index, n, is computed by 

drawing a connection halo about the peripheral atoms of a discrete molecular 

structure. As described above, the peripheral atoms are given as those atoms 

whose connectivity is 1. The process polygonalizes the peripheral as well as the 

core atoms of such a structure. Therefore, in the foregoing process a molecular 

Schlegel diagram, analogous to the Schlegel diagrams for the polyhedra, is 

produced. [7] 
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 The polygonality index, n, is therefore defined as the weighted average 

number of sides over the polygons inscribed within the connection halo (Schlegel 

diagram) of a discrete molecular structure. The connectivity index, p, is computed 

similarly, and in the usual way for the polyhedra and extended structures, by 

taking a weighted average over the connectivities of the atoms comprising the 

molecular structure. The artificial and non-chemical edges introduced in the 

polygonalization procedure are not taken as bonds in the structure and thus play no 

role in the computation of the molecular connectivity index. The connectivity 

index is calculated according to the number of atoms bonded to the atom in 

question according to the most plausible Lewis structure that may be drawn for the 

molecule based upon elementary chemical valence theory. [8] 

 

2. Aufbau Process for Fullerene 

The methodology for computing the polygonality, n, and the connectivity, p, for 

discrete molecules can be envisioned in one way in terms of an "aufbau" process 

through which, in one particularly illustrative example of this, the icosahedral 

fullerene molecule is built up sequentially from 1,3-cyclopentadiene, C5H6, to the 

corannulane moiety, C20H10, onto an annelated corannulane molecule, C40H10, 

and finally onto the complete fullerene molecule, C60, with its full icosahedral 

topology. The icosahedral fullerene molecule has 12 pentagonal faces and 20 

hexagonal faces connected through trigonal vertices and thus has the topology of 

(55/8, 3). [5] 

 All along this aufbau pathway, which is a heuristic device used to show the 

rigorous applicability of the Schläfli symbols to molecular structures as shown in 

Figure 2; the topological parameters of molecular polygonality, n, and molecular 

connectivity, p, can be traced. 
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Figure 2: Aufbau molecular structures for icosahedral fullerene. 

 

 

 

In Figure 3 is shown the relevant molecules with the corresponding connection 

halos drawn around each one. The polygonality, n, can easily be computed in each 

case by summing over the various polygons in the structure, and dividing by the 

number of discrete polygons inscribed within the connection halo.  
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Figure 3: Aufbau molecular structures for icosahedral fullerene with 

connection halos drawn around each member 

 

 In the original 1,3-cyclopentadiene molecule we have a collection of five 4-

gons traced as C-C-H-H rings, a single C-H-H 3-gon and a single C-C-C-C-C 5-

gon. The latter pentagon is termed the adumbrated polygon in the molecular 

structure as it is evident before the full molecular Schlegal diagram is realized; the 

remaining polygons which present themselves for counting upon polygonalization 

of the molecule, are termed the dumbrated polygons. Therefore the 7 polygons 

enumerated above, which are distributed over the skeleton of the 1,3-

cyclopentadiene molecular Schlegel diagram, lead to a polygonality, n, of 4. 

Similarly, the connectivity index, p, can be computed for 1,3-cyclopentadiene by 
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summing each of the connected atoms with their respective connectivities; six 1-

connected H atoms, one 4-connected C atom and four 3-connected C atoms; and 

dividing by the number of atoms in the molecule. This leads to a molecular 

Schläfli index of (4, 2) for the 1,3-cyclopentadiene molecule.  

 Similarly, the molecular Schläfli index for the annelated 1,3-

cyclopentadiene molecule, called corannulane, C20H10 [9], is computed to be (5, 

2.3333). And the annelated corannulene molecule, C40H10, is computed as 

(5.3846, 2.6). By tracing these topological parameters as the shell of the 

evergrowing discrete fullerene molecule is realized, one may see that indeed these 

parameters of "n" and "p", which for the fullerene molecule are given as (55/8, 3), 

are converged upon gradually in the aufbau process. One can separately plot the 

topological parameters in a Schläfli space and show the convergence process 

graphically. This plot simply places polygonality, n, on the ordinate axis and 

connectivity, p, on the absicca axis. Such a topology graph is shown in Figure 4. 

Note that the points on the curve correspond to a continuous function of the form 

shown in Equation 4 below: 

 

 
 

Figure 4: Topology graph in Schläfli space of fullerene aufbau data fit to a 
quadratic function in "n", the polygonality. 
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(4)   p = 0.4755n2 - 3.9848n + 10.3350  

Because this quadratic fit to the Schläfli data for the aufbau process of icosahedral 

fullerene is a continuous function, it is suggested here that such indices are 

rigorous descriptors of the topology of the discrete molecules. The convergence of 

the aufbau process on the topology of the icosahedral fullerene insures that the 

aufbau process is a valid heuristic for defining the topologies of the intermediate 

discrete molecular structures, the molecular Schlegel diagrams, using the 

methodology outlined here. 

 

3. Aufbau Process for the Graphene Sheet 

The graphene sheet is well-known, its topology is (6, 3). The sheet is a honeycomb 

network composed of the familiar hexagons linked together through trigonal 

centers. [10] This is shown in Figure 5. 

 

 
 

Figure 5: Graphene sheet with honeycomb topology. 
 

In a manner entirely analogous to the aufbau process for the icosahedral fullerene 

molecule, one can envision a building-up pathway for the graphene sheet. The 
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process begins, naturally, with the benzene moiety and the Schläfli indices are 

calculated for it as (4.2857, 2) from the same polygonalization prescription already 

described for 1,3-cyclopentadiene. This is shown in Figure 6. 

 

 
 

Figure 6: Polygonalization of the benzene moiety. 

 

 Annelating benzene means placing a shell of hexagons outside the core 

benzene molecule to form the coronene moiety. Successive annelations produce 

the higher poly[m]hexes to coronene as is shown in Figure 7. 

 

 
Figure 7: Members of the poly[m]hex family that are molecular building 

blocks in an aufbau process leading to the graphene sheet. 
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The index m in the name poly[m]hexes refers to the number of adumbrated 

hexagons in the discrete molecular structure. The process is by now familiar, and 

one arrives at a set of Schläfli symbols for the next 2 members of the poly[m]hex 

family, after beginning with benzene. These are listed in Table 1. 

 
Table 1: Schläfli Indices of Three Precursors of the Graphene Sheet Extended 
Structure.   

 
 

name 
 

polygonality, n 
 

connectivity, p 
 

benzene 
 

4.2857 
 

2.0000 
 

coronene 
 

5.0220 
 

2.3333 
 

poly[14]hex 
 

5.2667 
 

2.4482 
 

Graphene 
 

6.0000 
 

3.0000 

 

 By graphing these Schläfli indices in a Schläfli space, where one plots 

polygonality on the ordinate axis, and one plots connectivity on the absicca axis, it 

is possible to fit a continuous function in n and p to these points as they converge 

and pass through the ordered pair (6, 3) corresponding to the topology of the 

graphene sheet. This is shown in Figure 8 below. This is just the process that was 

used to validate the convergence of the discrete molecular building blocks of 

fullerene to the icosahedral topology of the full fullerene molecule, as described in 

the previous Section. As in the case of the icosahedral fullerene molecule, the 

Schläfli indices for the poly[m]hexes must indeed converge upon the index (6, 3) 

in the limit of large m, as they structurally converge upon the graphene sheet in 

this limit.  
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 A perfect quadratic fit to the data, shown as Equation 5 below, insures the 

internal consistency of the Schläfli indices for the discrete molecules, the 

poly[m]hexes, through the aufbau process for the complete graphene sheet. 

 

 
 

Figure 8: Topology graph in Schläfli space of graphene aufbau data fit to a 
quadratic function in "n", the polygonality. 

 

(5)   p = 0.1643n2 - 1.1079n + 3.7302  

 

It is not clear why the aufbau processes for the construction of fullerene and the 

graphene sheet should lead to quadratic fits to the Schläfli data. At this point it is a 

mathematical abstraction which will be investigated further for its possible 

physicality in terms of the topology of the molecular Schlegel diagrams, the 

molecular cells which obey Euler's relation for the cell. 
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4. A Modified Topology Map 

The topology map shown in Figure 1, applicable to the topology of the polyhedra 

and 2-dimensional and 3-dimensional extended structures, can be modified for the 

inclusion of Schläfli indices for the molecular structures, the molecular Schlegel 

diagrams or cells we have been discussing thus far in this paper. Figure 9 shows 

just such a modified topology map in which the column headed by the tetrahedron 

(3, 3) is appended to its left by columns headed by (2, 2) and (1, 1). (2, 2), a cell 

with a polygonality of 2 and a connectivity of 2, is a seemingly impossible object. 

(1, 1) would appear to be the Schläfli symbol for a diatomic molecular graph. 

 

 
 

Figure 9: A modified topology map for inclusion of the Schläfli symbols for the 
discrete molecular graphs, or the molecular Schlegel diagrams. 

 

 To insure that one is getting what one would hope for in such a topology 

map, there are also the more familiar entries like (4, 2), the entry for the topology 

of the 1,4-cyclopentadiene molecule, as was discussed above. It is clear at this 

juncture that there will be redundancies in this map and in the Schläfli symbols 

that represent the topology of these molecular cells. For example, the molecules 

formaldehyde, H2CO, and phosgene, Cl2CO, have the same Schläfli index of (3, 
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1.5) but have very different physical and chemical properties. They are said to be 

similar chemical graphs. A way to distinguish between them in this Schläfli 

indexing methodology is to introduce a weighting scheme for the atoms in the 

topologically isomeric molecular graphs to distinguish them chemically and 

physically. Such weighting schemes are commonly employed in the various graph 

theoretical approaches to molecules. [11] 

 Therefore, the original topology map of Figure 1, that was the guiding 

principle for Wells in his enumeration of the various networks numbering over 

100 that he worked on in his lifetime, is modified for connectivities lower than the 

characteristic minimum of 3 required for polyhedra and extended structures. We 

just have introduced panels starting with (1, 1) and (2, 2) to amend the topology 

map of Wells for inclusion of the problem of molecular Schlegel diagrams, or 

molecular cells. Such a modified topology map does indeed specify the identity 

and location of a molecular Schlegel diagram, or chemical graph, conclusively. It 

labels the discrete location and relationship of a particular chemical graph to all 

other chemical graphs as we have already seen in the mappings of the aufbau 

Schläfli data for the icosahedral fullerene and the graphene sheets in Figures 4 and 

8 above. These mappings were done in Schläfli space, that is the space of n and p, 

in the same manner that the more familiar topology maps are constructed. 

 Unfortunately, although we have a closed form Euler relation for the cell 

that describes the topology of the polygonalized molecular graphs, the molecular 

Schlegel diagrams, shown as Equation 3 above [6]; we do not have a 

corresponding Schläfli relation for the molecular graphs, in terms of a relation 

between n and p, on the one hand; and V, E and F, on the other hand. It is just 

because of this lack of a Schläfli relation for molecular graphs, in a sense, that one 

can look to the validity of separating the methodologies for computing the 

connectivity (based upon valence concepts [8]) and the polygonality (based upon 
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drawing a connection halo around the atoms in the chemical graph). If there were 

just such a rigorous Schläfli relationship for the molecular graphs, a separation of 

these methodologies would not be necessary [12]. 

 

5. Structure-Activity Relationships 

As an extension of the ideas presented in this paper regarding the computation of 

molecular Schläfli indices, it would be a natural application of such data in the 

prediction of the physical, chemical and biological properties of molecular graphs 

through structure-activity relationships. One approach to this, would be to employ 

the Schläfli space already used in the modeling algorithms above in the 

construction of the fullerene and graphene structures, and append onto it an axis in 

fully 3-space that corresponds to a molecular property; be it physical, chemical or 

biological. A prototype of such a graph is shown in Figure 10. A separate 

communication will discuss a specific application of the molecular Schläfli indices 

in modeling molecular phenomena. 

 

 
 

Figure 10: An example of a structure-activity graph between the Schläfli indices 
and a molecular property in a 3-dimensional space that is an extension of the 

ordinary Schläfli space of "p" versus "n" for molecules. 
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