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Abstract

The Clar problem (computing the cardinality of a maximum resonant set) of a

benzenoid hydrocarbon is addressed. The concept of a maximum M-resonant
set for some perfect matching M is introduced and a related result is obtained
and its potential usefulness in developing an efficient combinatorial algorithm

to solve the Clar problem of benzenoid hydrocarbons is discussed.
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1. Introduction

A hexagonal system (alse called a polyhex) is a 2-connected subgraph of the
hexagonal lattice without non-hexagonal interior faces (Guo and Zhang
[1992]). A hexagonal system is to be placed on the plane so that a pair of
edges of each hexagon lies in parallel with the vertical axis. If no three
hexagons of a hexagonal system H have a common node, H is said to be
catacondensed (Gutman et al. [1977]). Hexagonal systems represent

benzenoid hydrocarbons.

Let L be a non-empty set of hexagons of a hexagonal system H. We call L a
set of mutually alternating hexagons of H (or a framed set of H) if there exists
a perfect matching of H that contains a perfect matching of each hexagon in L
(Abeledo and Atkinson [2000]) (Fig. 1). A perfect matching of a hexagon is
called a sextet (Ohkami et al. [1981]). It is proper if the right vertical edge of
the hexagon is in the perfect matching; otherwise it is improper.

Fig. 1.{2, 4, 5} is a set of mutually alternating hexagons

Let L be a non-empty set of hexagons of a hexagonal system H, We callL a
resonant set of H if the hexagons in L are pair-wise disjoint and there exists a
perfect matching of H that contains a perfect matching of each hexagon in L
(Abeledo and Atkinson [2000]) or equivalently (Gutman [1983]) if the
hexagons in L are pair-wise disjoint and H-L has a perfect matching (H-L
denotes the subgraph of H obtained by deleting from H all the nodes of the
hexagens in L together with their incident edges) (Fig. 2). The cardinality of a
maximum resonant set is called the Clar number (Hansen and Zheng 11992]).
A Clar formula of a hexagonal system (Gutman [1982], Gutman and Cyvin
[1989], Hansen and Zheng [1994)) is obtained by drawing circles in some ot
the hexagons according to the foliowing rules: (a) circles are nev - drawn in

adjacent hexagons; (b) the graph obtained by deleting the nodes of all
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hexagons containing a circle must have a perfect matching or must be empty,
(c) the number of circles is maximum subject to (a) and (b). Hosoya and
Yamaguchi [1975] were first to define Clar type formuias which are
constructed by taking into account rules (a) and (b) but not the requirement
(c). These are called generalized Clar formulas (Gutman [1982], Gutman and
Cyvin [1989]). It is clear that Clar formulas and generalized Clar formulas are
essentially pictorial representations of maximum resonant sets and resonant
sets respectively.

Fig. 2. {1, 5} is a resonant set

Let L be a non-empty set of hexagons of a hexagonal system H. Let M be a
perfect matching of H. We call L an M-resonant set if the hexagons in L are
pair-wise disjoint and the perfect matching M contains a perfect matching of
each hexagon in L. A non-empty set L of hexagons is resonant if and only if it
is M-resonant for some perfect matching M. A maximum resonant set is a
maximum M-resonant set for some perfect matching M, but the converse is
not necessarily true (Fig. 3).

The Clar problem of a hexagonal system is the problem of determining the
Clar number of the hexagonal system. The Clar number is of significance in
the theory of benzenoid hydrocarbons. The main chemical implication of the
Clar number is the following empirically established regularity (Clar {1972]); If
B, and By, are two isomeric benzenoid hydrocarbons, and if the Clar number
of B, is greater than the Clar number of By, then the compound B, is both
chemically and thermodynamically more stable; the positions of the maxima n

the electron absorption spectrum of B, are shifted towards longer wavelengths
relative to B,.
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Fig. 3. {3} is 2 maximum M-resonant set, but not maximum rescnant

2. Computing the Clar number

Hansen and Zheng [1992] reported upper bounds for the Clar number.
Somewhat later, they formulated the Clar problem as an integer linear
program (Hansen and Zheng [1994]). Recently, Abeledo and Atkinson
showed that the problem could be solved as a linear program {(Atkinson
[1998], Abeledo and Atkinson [2000]). An efficient combinatorial (graph-
theoretic) algorithm to solve the Clar problem in catacondensed hexagonal
systems was given by Atkinson [1998, p. 5-14]. Later the algorithm was re-
invented by Klavzar et al. [2002]. Its time complexity is linear (Klavzar [2003]).
Also, an efficient combinatorial algorithm to solve the Clar problem in a

restricted class of hexagonal systems was developed by Zhang and Li (1989].

3. Aresult and its potential usefulness
Theorem. Let H be a hexagonal system that has a perfect matching. Let L be
a set of mutually alternating hexagons. Then the subgraph of the (inner) dual

of H induced by the nodes that correspond to the hexagons in L is bipartite
(Fig. 4).

Proof. Let M be a perfect matching of H that contains a sextet of each
hexagon in L. The hexagons in L are either proper or improper sextets.
Consider the subgraph of the (inner) dual of H induced by the nodes that
correspond to the hexagons in L. Color a node btack if it corresponds to a
proper sextet and white if it corresponds to an improper sextet. Assume that
an edge of this induced subgraph joins twc nodes of the same color, ihen thz
corresponding hexagons are adjacent and they are boli proper sexteis or
both improper sextets, a contradiction.

QE.D.
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Remark. This theorem and its proof can be extended to a plane map of a 2-

connected planar bipartite graph that has a perfect matching (Appendix).

Fig. 4. The induced subgraph is bipartite

Discussion. Let H be a hexagonal system that has a perfect matching. Let M
be a perfect matching of H. Let L be the set of all M-alternating hexagons. ( A
hexagon is M-alternating if the perfect matching M of H contains a perfect
matching of the hexagon). Consider the subgraph of the (inner) dual of H
induced by the nodes that correspond to the hexagons in L. A maximum M-
resonant set of H corresponds to a maximum stable set of this induced
subgraph. (A stable set of a graph G is a set of nodes in G, no two of which
are adjacent). According to the above theorem, this induced subgraph is
bipartite. Thus the maximum M-resonant set problem is a maximum stable set

problem in a bipartite graph.

K&nig's theorem states that in a bipartite graph, the maximum cardinality of a
matching equals the minimum cardinality of a node cover. (A node and an
edge are said to cover each other if they are incident. A set of nodes which
covers all the edges of a graph G is called a node cover for G, while a set of
edges which covers all the nodes is an edge cover.) A proof of Konig's
theorem (Cook et al. [1998], p. 48) shows how a maximum flow algorithm
provides an efficient combinatorial algorithm for constructing a maximum
matching and a minimum node cover of a bipartite graph. The complement of

a minimum node cover is a maximum stable set (Gallai [1959}). Thus the
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maximum stable set problem in a bipartite graph can be solved by an efficient

combinatorial algorithm and so is the maximum M-resonant set problem.

A perfect matching M of a hexagonal system H is optimal with respect to the
Clar problem if a maximum M-resonant set is maximum resonant. As shown
above the maximum M-resonant set problem can be solved by an efficient
combinatorial algorithm. Hence, solving the Clar problem by an efficient
combinatorial algorithm reduces to developing an efficient combinatorial
algorithm to obtain a perfect matching that is optimal with respect to the Clar
problem. A criterion for a perfect matching to be optimal with respect to the
Clar problem needs to be developed and also a mechanism that moves us
from some (not optimal) perfect matching to a “better” one.

4. Appendix

Definitions. Let G be a plane map of a 2-connected planar bipartite graph.
Since G is a 2-connected plane graph, every face boundary of G is a cycle of
G (Fleischner [1990], p. 111-563). We identify the faces of G with the cycles of
their boundaries. Since G is bipartite, all its cycles are even (Harary [1969], p.
18). By definition of a bipartite graph, we can color the nodes of G with two

colors, black and white say, so that no two nodes of the same color are
adjacent.

Let L be a non-empty set of interior faces of the graph G. We cal! L a set of
mutually alternating faces of G {or a framed set of G) if there exists a perfect
matching of G that contains a perfect matching of each face in L (Abeledo and
Atkinson [2000]). An alternating face f of G is proper if, by the orientation of f
clockwise, the matched edges of f go from white nodes to black nodes;
otherwise f is improper (Zhang and Zhang [1997)).

Theorem. Let G be a plane map of a 2-connected planar bipartite graph that
has a perfect matching. Let L be a set of mutually alternating interior faces.
Then the subgraph of the (inner) dual of G induced by the nodes that
correspond to the faces in L is bipartite.
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Proof. Let M be a perfect matching of G that contains a perfect matching of
each face in L. The faces in L are either proper or improper alternating (M-
alternating) faces. Consider the subgraph of the (inner) dual of G induced by
the nodes that correspond to the faces in L. Color a node black if it
corresponds to a proper alternating face and white if it corresponds to an
improper alternating face. Assume that an edge of this induced subgraph joins
two nodes of the same color, then the corresponding two faces share an
edge, e say, and they are both proper M-alternating or both improper M-
alternating. It is easy to see that e belongs to M and does not belong to M by
considering the two proper/improper M-alternating faces, a contradiction.
Q.E.D.
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