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1. INTRODUCTION

The concept of the resonance graphs was first raised by Griindler 3, 4] and was then
re-invented by El Basil [1, 2] and, independently, by Randi¢ {16, 17]. Looscly speaking,
the concept models the interaction of two Kekulé structures (of benzenoid hydrocarhons)
that differ in the position of three double bonds [12]. In addition to this, Zhang, Guo
and Chen [19] introduced resonance graphs under the name Z-transformation graphs and
established their basic mathematical properties. It was found that the resonance graphs of
catacondensed benzenoid graphs as well as the resonance graphs of more gencral hexagonal
graphs possess a lot of structure, sce [13] and the references therein. Note that the coneept
of the resonance graphs is not restricted to catacondensed benzenoids, but to benzenoids
that possess 1-factor. Hovewer, catacondensed hexagonal graphs always possess 1-factors
Moreover, Gutman [5] showed that a catacondensed hexagonal graph with i hexagons has
at least i+ 1 1-factors.

By a hezagonal graph we mean a simple 2-connected plane graph in which all inner faces
are hexagons (and all hexagons are faces), such that two hexagons are either disjoint or
have exactly one common edge, and no three hexagons share a common edge. A hexagonal
graph G is catacondensed if any triple of hexagons of G has empty intersection. See also
6. 7).

Let G be a hexagonal grapli. Then the vertex set of the resonance graph R(G) of
G consists of the 1-factors of G, two 1-factors being adjacent whenever their symunctric
difference forms the edge set of a hexagon of G. For instance, the construction of the
resonance graph of the benzofc|phenanthrene is presented in Fig. 1. We also set R(N3) =
R(K,) = K, where K, denotes the complete graph on n vertices.

The Fibonacei cubes represent a new communication network that possess many suit-
able properties that are important in network design and application. Its major advantage
is that it uses fewer links than the comparable hvpercube, while its size does not increase
as fast as the hypercube. Moreover, the Fibonacci cubes can efficiently emulate many hy-
percube algorithms [8]. The Fibanacci cubes possess a valuable recursive structure tightly
associated with the Fibonacei numbers. In addition, the Fibonacel cubes are precisely
the resonance graphs of fibonaceenes, i.e. a subclass of catacondensed hexagonal graphs
[14].

The paper is structured as follows. Section 2 contains basic definitions concerning
the resonance graph of catacondensed hexagonal graphs. The characterization for the
resonance graphs of catacondensed hexagonal graphs needed for the recognition algorithm
is described is Section 3. In Section 4 an algorithm for recognizing the resonance graphs

of catacondensed hexagonal graphs with time bound Q(man) is presented. Morcover, the
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Figure 1: Kekulé structures and the resonance graph of benzofc]phenanthrene.

algorithm can be modified in order to recognize the Fibonacci cubes with the same time
bound.

2. PRELIMINARIES

A hexagon of a catacondensed hexagonal graph can share an edge with at most three
other hexagons. According to this, we will say that a hezagon is of degree trec. two, or
one, vespectively. A hexagon of degree one is also called pendant. The edge of a pendant
hexagon that is shared with another hexagon will be called a join edge. In Fig. 2 we see
a catacondensed hexagonal graph G Its hexagons A, 4,, and Ay are of degree one, two,
and tree, respectively.

If A is a hexagon of a catacondensed hexagonal graph of degree two, then 4 possesses
two vertices of degree two. A is called angularly connected. if these two vertices are
adjacent and A is called linearly connected otherwise. In Fig. 2 we see hexagous 4, and
A, of degree two, the former is angularly connected and the latter is linearly connected.

A hezagonal chain is an unbranched catacondensed hexagonal graph. i.e., no hexagon
is of degree three.

A matcling of a graph G is a set of pairwise independent edges. A matching is a 1-

factor, if it covers all the vertices of G. For a graph G, let F(G) be the set of its 1-factors.
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Figure 2: Catacondensed hexagonal graph f1.

In addition, if e, es,...,e, and e are fixed edges of G, let F(G;e), ey, ..., ¢,,€) denotes
the set of those 1-factors of G that contain ey, €y, ..., €, and do not contain ¢.

Let G = (V(G), E(G)) be a graph. A walk is a sequence of vertices vy, va, ..., v, and
edges 10,41, 1 <1< n— 1. A path on n vertices is a walk on n different vertices and
denoted P,. For u,v € V(G), dg(u, v) or d(u, v) denotes the length of a shortest path in
G from © to v.

The Cartesian product GOH of graphs G and H is the graph with the vertex set
V(G) x V(H) and (a,z)(b,y) € E(GUH) whenever ab € E(G) and z =y, or a = b and
Ty € E(H).

It is well known that the Cartesian product is associative, ¢f. [10, Proposition 1.36].
Hence the Cartesian product of graphs G, Ga, ..., Gy can be written as G, 0G0 - - - OGy,
The vertex set of such a product is then the set of all k-tuples (1w, uy, ..., ug), where
u; € Gy, while (uy,us, ..., u) is adjacent to (o, v, ..., 1) whenever there is an index
J such that u;v; is an edge of G and u; = o for all & # j. The n-cube @, (or the
n-dunensional hypercube) is the graph whose vertices arve all hinary words of length n,
two words being adjacent whenever they differ in precisely one place. In other words, @y
is just the Cartesian product of n copies of I{5.

If H is a subgraph of G, such that dy(u,v) = deg(u, ¢) for all u,v € [T, then H is an
isometric subgraph. Isometric subgraphs of hypercubes ave called partiel cubes.

Let G be a connected graph and e = 2y, [ = uv be two edges of . We say ¢ is in
relation © to f if d(x, «) + d(y,v) # d(x,v) +d(w. ). O is veflexive and symmetrie, bul
necd not be transitive. We denote its transitive closure by ©*. Winkler [18] proved that
G is a partial cube if and only if G is bipartite and ©* = O,
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For a triple of vertices w, » and 1w of a given graph G, a vertex @ of G is a median
of u, v and w if x lies simultancously on shortest paths joining u and o, v and w, and w
and 1. If G is connected and every triple of vertices admits a unigue median, then G is
a median graph.

For an edge ab of G we write

Wy = {w € V | d(a,w) < d(b,w)},

Wie = {w € V | d(b,w) < d(e, w)},

Fop = {zy | zy edge of G with z in W, and y in 19,}.
Ua = {w € Wy | w is the end vertex of an edge in Fi},
Uba = {w € Wy, | wis the end vertex of an edge in F,} .

For X € V(G) let G[X] denotes the subgraph of G induced by the set X

Let ab be an edge of a median graph G for which Uy, = W, Then G117, is called «
peripheral subgraph of G.

A O-class E of a median graph G is called peripheral if at least one of G[W,,] and
G[W,a] is peripheral for ab € E. E is internal if it is not peripheral.

Let H be a fixed subgraph of a graph G, H C G. The peripheral expansion pe(G; I)
of G with respect to H is the graph obtained from the disjoint union of ¢ and an iso-
morphic copy of H, in which every vertex of the copy of H is joined by an edge with the
corresponding vertex of /f C G. Note that the ends of the newly introduced edges induce
a subgraph of pe(G; H) isomorphic to HOK,.

A peripheral contraction is just the inverse operation of the expansion, i.c., G is a
peripheral contraction of pe(G; H).

Let e be an edge of a hexagonal graph G. Then the cut C, corresponding to ¢ is the
set of edges so that with every edge ¢ of C, also the opposite edge with respect to a
hexagon containing e’ belongs to C,.. As hexagonal graphs admits isometric embeddings
into hypercubes [11], €y, can also be deseribed as the equivalence class of the relation ©

containing e.

3. CHARACTERIZATION

In this section we present our main theorem. We first recall some notations concerning
catacondensed hexagonal graph introduced in [13).

Let H be a catacondensed hexagonal graph and ¢ an edge of H with ends of degree
two. Let e = eg,ey,...,e, be the edges of the cut Cp, and let A; = A, 4, ..., A, be
the corresponding hexagons. Let ¢4 and e~ be the edges of A, incident to e,, where
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e+ is the right edge looking from ¢ = ey to e, while ¢— is the left edge, and let Ay
and A_ be the corresponding hexagons. Remove now from H the hexagons Ay, .. A,
except e+ and e—. Then the remaining graph consists of two connccted components A4
and H,._, where e+ € Hey and e— € H._. Note that any of H,, and H,_ is either a
catacondensed hexagonal graph or a K, These notations are illustrated in Fig. 2. If
H,, is a catacondensed hexagonal graph, we repeat the desceribed construction on My,
where the construction beging with e+. In this way we obtain two connected subgraph
of H denoted H.y, and H.,_. Similarly. if [, is a catacondensed hexagonal graph,
then we repeat the construction on H,., starting with e—, to obtain connected subgraphs
H, , and H,. _. In the case that H.y = Ky we set Hopy = Ky and Hoypo = K, and if
H,_ =K, weset He_y = K; and H.... = K.

Klavzar, Zigert and Brinkmann [15] proved that the resonance graph IR(H) of a cat-
acondensed benzenoid graph I can be isometrically embedded into the A-dimensional
hypercube @y, where h is the number of hexagons of A . With other words, they proved
that the resonance graph R(H) of a catacondensed benzenoid graph H is a partial cube
where the number of ©-classes corresponds to the number of hexagons of H . In fact, they
showed an even stronger statement, namely that R(H) is a median graph.

Klavzar, Vesel and Zigert [13] closely examined the structure of the resonance graphs

of hexagonal graphs and proved the following decomposition theorein.

Theorem 1 Let H be a catacondensed hexagonal graph and e an edge with ends of degree
two with |Ce| = n+1, wheren > 1. Let Y = R(H)[F(H;¢)], X = RUH)[F(G;e,e+,e-)],
and X, the copy of X in Y} (the first Y-layer of YOP, ). Then

R(H) =pe(YOL,; X)).
Moreover,

(1) Y =R(H. )OR(H,.) and
() X = Rl SO R YO R

Let H be a catacondensed hexagonal graph and e the edge with ends of degree two
with |C] = n + 1, where n > 1. The decomposition theorem is proved using the fact .
that fori=1,2,...,n— 1, a l-factor f; € F(H;¢;) is adjacent (in R(H)) to exactly one
1-factor fi_y € F(H;e;-1) and to exactly one 1-factor fiy € F(H;¢;1). Morcover, the
symmetric difference of f;_; and f, is the edge set of 4,, while the symmetrie difference
of f; and fii; is the edge set of A4y, Similarly, the edges of A, | form the symmetric
difference of f,,_» and f,,_; as well as the edges of A; form the symimetric difference of fy
and fi. A l-factor f,, € F(H;c,) is adjacent to exactly one L-factor f from F({I;e,_)
and the symmetric difference of f, and f is the edge set of 4, f. Fig. 7in [13].
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With other words, for i = 1,2,... n every hexagon oA, corresponds to the unigue
O-class in R(H) consisted of the edges joining F(If;e;_y) and F(H:ey).

Consider now the structure of R(CH)[F(H; ¢y -1)] versus RUD[F(H; ey, et 0=)] We
know from the decomposition theorem and from the discussion above that R(H)|[F(H; e, 1))
contains a copy of R(H)[F(H;e,)| with the vertex set F(H; ey, e+, e=). Note also that
R(H)[F(H;en)] = R(H.,)AR(H,..) and
R(H)[F(H;en- 1 e+, e=) = R(H,)OR(H,, . )OR(H.. . )OR(H._.).

We distinguish three cases now.

(a) Hey = Ho- = Ky. Then F(H;eq-1,e4,6~) = F(H;e,-1) = F(H;e,) = K.

(b) Exactly one of H,, and H,_ equals K;. Suppose H., # I, Then from Theorem 1
follows F(H;eny,e+,6-) = F(H;euoy,e+). Note that F(H: e} = F(H; ¢\, 04) 4
F(H;ep.,e+). Thus, a I-factor fy € F(H;enp,e+) is adjacent to a I-factor f, €
F(H;epy, &) if the symmetric difference of f, and fy is the edge set of 4,. Note that
since R(H)[F(H;e,-1)] is connected and F(H;e,.y,¢+) # @, there exist at least one
edge connecting a 1-factor from F(H; ey, e+) with a I-factor from F(H;e, -y, ¢+). The
discussion implies, that a vertex of F(H; e, -y, e+) is adjacent to a vertex of F(H;e, 1)\
F(H;e,—y,e+) if their joining edge belongs to the ©-class corresponding to A,.

(c) Both H,, and H,_ differs K5. Since F(H;e,.1) = F(H; ey, e+)+F(H; ey, 65),
a l-factor f,. € F(H;e,_;,e+,e~) is adjacent (o a 1-factor f; € F(H;ep.y,e+) if the
symmetric difference of f,_ and f; is the edge set of A,. Similarly, since F(H;e, ;) =
F(H;eny,e—) + F(Hjep.e=), a 1-factor f,_ € F(H;e,1,e+,e=) is adjacent to a
I-factor f,_ € F(H;en.y.e—) if the symmetric difference of f,_ and f_ is the cdge
set of A_. The discussion implies, that a vertex of #(H:e, -, e+.e~) is adjacent to a
vertex of F(H; en )\ F(H;en_1, e+, e—) if their joining edge belongs cither to the ©-class
corresponding to A, or to the O-class corresponding to A_, ¢f. Iig. 3.

Let H be a subgraph of a graph . Then G4 is the set of all edges zy of (7 with
reHandy ¢ H.

We say that ©-classes L7 and F of a inedian graph G are adjacent, if there exist incident
edges e € IZ and f € F such that ¢ and f do not lie in a common 4-cycle. Note that a
O-class E of a median graph G is adjacent 1o a O-class F (# E) of G if for ab € E the
intersection of 0G[Uy| U G[Upa] with F'is not empty.

Proposition 2 Let H be a catacondensed hexagonal graph and ¢ an edge with ends of
degree two with |C,| = n+1, wheren > 1. Let £\, . .... [, E., E_ denote the O-classes
of R(H) corresponding to 4,. 4y, ..., Ap, Ay, A, vespectively. Then

(i) E\ is peripheral and adjacent ezactly to E,,

(i) E; is internal and adjacent exactly to E;., and E.,,, i =2.3,...,n~ 1,

(#ii) E, is peripheral and adjacent ezactly to E,_,, E_ and E,.
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Figure 3: The structure of F(H;e,_;).

Proof. (i} and (ii) follow directly from the decomposition theorem and the discussion
above. In order to prove {iii) note first that if H., (H._) = Ky then £, (£.) = . We give
the proof only for the case if both H,, and H,_ differ K. Let ab € E,. Then (without
loss of generality) Uy, = Wy, = F(H;e,) and Uy, = F(H;e,_1,e+,e—). Therclore,

G[Wa) is peripheral and 8G[Uy] = Fy. From the discussion above it follows that in
JR(H)[F(H;en_1,e+,e-)] are only the edges of E,, E,_, Ey and E._. Thus, the edges
of E, are adjacent only to the edges £,,_,, ', and E_. 0

The proposition is illustrated in Fig. 4 where the resonance graph of the graph from
Fig. 2 is depicted. The O-classes E), o, Fs, F, E_FE, ., and E, _, of R(H) correspond
to hexagons A, Ay A3, Ay A A, | and A,_, of H, respectively.

Let G and G’ be partial cubes and let £ be a ©-class of G We define the set
EDG" := {(u,z)(v.z); wv € E, z € V(G')}. For a O-class E' of ¢, G'OE is defined
analogously. It is well known that £0G" forms a ©-class in GOG'. Furthermore, cach
O-class of GOG is induced either by some E of G or by some £ of ¢,

1t is not difficult now to deduce the following lemma.

Lemma 3 Let G and G be medion graphs and lel E, F be O-classes of G and E' of G'.
Then

(1) EQG" and FOG" are adjacent in GOG" if and only if F and I are adjucent ©-
classes of G,

(i) EOG" and GOE' are not adjucent,

(1) if £ is peripheral (internal) then EQG' is peripheral (internal).

Let G be a median graph. Then the definition of adjacency between two O-classes

of G induces the graph with the vertex set consisting of all ©-classes of (7. two vertices
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Figure 4: The resonance graph R(H), cf. Fig. 2, with its O-classes.

being adjacent if the corresponding equivalence classes are adjacent. This graph will be
denoted T(G).

Theorem 4 Lel H be o catacondensed hezagonal graph. Then T'(IR(11)) is isomorphie
to the wmner dual of H. Morcover, o ©-class of R(I) is wndernal of and ondy of the

corresponding hexagon is linearly connected.

Proof. If H consists of a single hexagon, the theorem clearly holds. Assume that /7
contains at least two hexagons.

We will show that a ©-class £ of R(H) is adjacent to £ of R(H) if two corresponding
hexagons A and A" are adjacent in H. In addition, we will show that /< is internal. if and
only if 4 is of degree two and lincarly connected.

We distinguish four cases with respect to the position of A: (a) A is pendant, () 4
is angularly connected, (c) A is linearly connected, and (d) A is of degree three.

{a) Let ¢ be the edge of A opposite to the join edge of A. By Proposition 2 (i) the
corresponding O-class E = E, is adjacent exactly to £, and peripheral,
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(b) Let e be the cdge of A with ends of degree two. Then |C] = 241 = 2 and by
Proposition 2 (iii) the correspouding O-class £ = [, is peripheral and adjacent to Fy
and E_.

(¢) Note that in general we cannot find such an edge e that cut € involves A, Towever,
the decomposition theorem implies the recursive procedure, starting on the edges e+ and
¢—, which can be repeated till 4 is engaged. We proceed by induction on the number
of recursive steps . Let e be an edge of H with ends of degree two. If r = 0, the
case is settled by Proposition 2 (ii). For r > 0 assume without loss of generality that
Aisin He,. I A = A, then by Proposition 2 the corresponding O-class £ is in H,y
peripheral and adjacent to exactly one ©-class. Otherwise, E is internal in 7l and
adjacent to exactly two ©-classes. From Lemma 3 follows that ©-class EOH,_ is either
peripheral and adjacent in H,,OH,_ with exactly one ©-class (if A = A,) ov internal
and adjacent with two ©-classes (if A # A, ). The decomposition theorem yields that the
set of O-classes of R(H) is made up of Fy, By, ..., E, as well as of the ©-classes included
in H,OH,_. E\, E,,...,E, are connected only among themselves with the exception of
£y which is connected also to £, and E_. Therefore if A = A, then £ is connected also
with £, and hence internal in R{H) having exactly two adjacent ©-classes. Otherwise,
if A# Ay, then A is not adjacent with any of Ey, By, ..., E, and remains with only two
neighbors,

(d) With induction on the number of recursive steps (analogous with ¢) we can show that
E is peripheral and adjacent with exactly three ©-classes.

Since we analyzed all possible positions of a hexagon in f, the proof is completed. O

A hexagonal chain with h hexagons is called a linear choin and denoted Ly if for
ho= 1 it consists of a single hexagon and for & > 1 all of its hexagons, apart from the two
pendant ones, are linearly connected.

Before we state the main result. we recall the following lemma, ¢f. [0] and [10, Lemma
2.7)

Lemma 5 If G is « median graph, then no edge in OG|Uy)] s i relation © with eny edge
of G{Ua) for every edge ab of G.

The following tlicorem characterizes the resonance graphs of catacondensed hexagonal
graphs.

Theorem 6 A median graph G is the resonance graph of a catacondensed hexagonal
graph H if and only f T(G) is a tree with maximum degree three, where vertices of degrec
three correspond to peripheral ©-classes.
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Proof. In Theorem 4 we showed that T(G) is isomorphic to the inner dual of I if G is
the resonance graph of H. Moreover, it was established that every hexagon A of degree
three corresponds to the peripheral ©-class in G. Since the inner dual of /7 is a tree with
maximum vertex degree three, this part of the proof is completed.

Let G be a median graph with every ©-class of degree three being peripheral and with
T(G) being a tree with maximum vertex degree three. Note first that if G is isomorphic
to Py, then G is the resonance graph of the lincar chain Z,,. Suppose G is Lhe graplh with
the least number of ©-classes such that it is not the resonance graph of any catacondensed
hexagonal graph. Since T(G) is isomorphic to a tree, G contains at least one pendant
O-class E. Let ab € E and let F be the O-class adjacent to /2. Since £ is pendant
and adjacent only with F, we have G[W,,] = GlUy) = GUi,). Let (' be obtained by
peripheral contraction with respect to Uy {over the edges of £). Since G is median, by
Lemma 5 the edges of Uy, and Uy, are not in relation © with the edges of E. Therefore
the deletion of E affects only the neighborhood of F. Then T'(G") can be obtained simply
by deleting £ from T(G). It follows that T(G') is a tree with maximum vertex degree
three with every ©-class in G’ of degree three being peripheral. Furthermore, from the
assumption follows that G" is the resonance graph of some catacondensed hexagonal graph
H'. Let Ap be the hexagon of H' corresponding to F and let ¢d € [7. Note that F is
peripheral and of degree at most two in G'. We now distinguish three cases:

(i) F is of degree one in G' and G[U| = G[Upa]. Then A is pendant in H'. Let ¢ be
the edge opposite to the join edge of Ap.

(ii) F is of degree one in G" and G[U4) a subgraph of G[Uy,]. Since I is of degree one,
Ap is pendant in H'. Let ¢ be the edge with ends of degree two that is not opposite to
the join edge of Ap.

(iii) F is of degree two. Since £ is peripheral then by Theorem 4 Ap is angularly
connected in H'. Let ¢ the only edge of Ap with ends of degree two in this case.

By the decomposition theorem the edge ¢ in all three cases induces the decomposition
with Y isomorphic to G[U,]. Let H be a catacondensed hexagonal graph which we obtain
from H' by appending a new hexagon to Ap at the edge e. The resonance graph of H can
be obtained by peripheral extension of G with respect to Y. Since the obtained graph is

isomorphic to G, the contradiction proves the claim. [m]

4. RECOGNITION ALGORITHM

Theorem 6 conveys that a median graph G is the resonance graph of a cataconcdensed
hexagonal graph H if the ©-classes of G form a tree of maximum vertex degree three where
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the ©-classes of degree three are peripheral. The theorem is not only a characterization
of the resonance graphs of catacondensed hexagonal graphs, it is also practical from an
algorithinic point of view.

Let d(v) denotes the degree of the vertex v.

Procedure RESONANCE(G);
1. if G is I{; then ACCEPT.
2. if ¢ not a median graph then REJECT.
3. Formm a totaly disconnccted graph T' with the vertices being the ©-classes of G
4. for each O-class I of G do
4.1 Determine the corvesponding sets Uy, and Up,.
4.2 For any edge uv of 9G([Uy) and 9G([U,,] do
if uv belongs to ©-class F then make E and F adjacent in 7.
4.3 Determine whether E is internal or peripheral.
4.4 if d(E) = 0 or d(F) > 3 then REJECT.
45 if d(£) = 3 and E internal then REJECT.
5. if T'is a tree then ACCEPT else REJECT.

Theorem 7 RESONANCE correctly recognizes resonance graphs in O(mn) tine.

Proof. It is clear that the algorithm determines T(G) and checks if it is isomorphic Lo
a tree such that the degree of any vertex dees not exceed three. In addition, it checks
if every G-class with three neighbors is peripheral. Thus by Theorem 6 the algorithm is
correct.

Concerning the time complexity, we invoke (10, Algorithm 2.3] for Step 2 and Step
4.1. The algorithm recognizes median graph in O(mn) time. Morcover, it also determines
all O-classes of G and for cach O-class the corresponding sets Uy, and Uy,

For Step 4.2 we can perform a check for every edge wv in constant time with the
appropriate data structure. Note also that inserting an edge in a graph can also be done
in constant time. Therefore the time complexity of this step is O(m).

E is peripheral if one of the corresponding dG[Uy] \ E or dG[U] \ £ is empty.
Therefore Step 4.3 clearly does not violate the desired time bound as well as Steps 4.4
and 4.5, For Step 5 note that one can check in O} time whether 77 is a tree. Thus, the
overall complexity of the algorithm is O(enn) and the proof is completed. O

The Fibonacci cubes are for n > 1 defined as follows. The vertex set of I'), is the

sct of all binary strings byby ... 0, containing no two consccutive ones. Two vertices are

adjacent in Ty, if they differ in precisely one bit.
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A catacondensed hexagonal graph I with o hexagons is called o fibonaceene if for
Lo =1 it consists of a single hexagon and for & > 1 all of its hexagons, apart from the
two peudant ones, are angularly connected. It was proved in {14] that the resonance
graph of a fibonaccene with £ hexagons is isomorphic to the Fibonacei cube Iy, Note
that the benzolc]phenanthrene (see Fig. 1) is a fibonaccene with four hexagons, henee its

resonance graph is isomorphic to I'y.

Theorem 8 A median graph G is Uy 1f and only if every O-class in G 1s perpheral and
T(Q) is isomorphic to P,

Proof. The Fibonacci cube Iy is isomorphic to the resonance graphs of a fibonaccene
with h hexagons. All hexagons in fibonaccene, apart the pendant ones, are angularly
connected (and of the degree two). Therefore, by Theorem 6, all @-classes are peripheral

and T'(G) is isomorphic to P,. 0

Theorem 9 Fibonacet cubes can be recognized in O(mn) time.

Proof. Modify RESONANCE as follows. Let Step 4.3 rejects G if E is internal. Let
Step 4.4 rejects G if d(F) = 0 or d(E) > 2. Omit Step 4.5. Let Step 3 rejects G if T is
not isomorphic to . From Theorem 9 it follows that the modified algorithm correctly
recognizes the Fibonacci cubes. Moreover, it is straightforward to see that the modified
steps can be implemented to run within the O{mn) time. a
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