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Abstract

Non-rigid molecule group theory (NRG) in which dynamical symmetry operations are defined as physical
operations is a new field of chemistry. Smeyers and Villa computed the restricted NRG (r-NRG) of the triple
equivalent methyl rotation in pyramidal trimethylamine with inversion and proved that the r-NRG of this
molecule is a group of order 648, containing two subgroups of order 324 without inversions (see J. Math. Chem.
28 (4)(2000) 377-388).

In this paper, we introduce the Computer Algebra System GAP for solving some problems in
Computational Chemistry. We reprove the results of the mentioned paper of Smeyers and Villa by Computer
Algebra System GAP. Finally, we apply GAP to find the character table of full non-rigid group(f-NRG) of
tetraamine platinum (II) with the point-group symmetry Cy,.

INTRODUCTION
GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the
aim of the system, which is a group theoretical software for solving computational problems
in group theory. The last ycars have seen a rapid spread of interest in the understanding,
design and even implementation of group theoretical algorithms. These arc gradually
becoming accepled both as standard tools for a working group theoretician, like certain
methods of proof, and as worthwhile objects of study, like connections between notions
expressed in theorems. GAP was started as an attempt to meet this interest. This software was
constructed by GAP’s team in Aachen [1).

GAP 1s a free and extensible software package for computation in discrete abstract
algebra. The term extensible means that you can write your own programs in the GAP
language, and use them in just the same way as the programs which form part of the system

(the “Library™).
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Development of GAP began at Lehrstuhl D fur Mathematik, RWTH-Aachen, under the
leadership of Professor Joachim Neubuser in 1985. Version 2.4 was released in 1988 and
version 3.1 in 1992. The final full release of GAP 3, version 3.4, was made in 1994. In 1997,
Professor Neubuser retired, and overall coordination of GAP development, now very much an
international effort, was transferred to St Andrews. A complete internal redesign and almost
complete rewrite of the system, which was already in progress in Aachen, was completed and
following five, increasingly usable, beta-test releases, version 4.1, released July 1999, was the
first version of the rewritten system to be released without any restriction for general use.
Version 4.2 followed in spring 2000, version GAP 4.3 in May 2002 and, GAP 4.4 is being
released in March 2004. More information on the motivation and development of GAP fo

date, can be found on GAP web page that you find on hitp://www.gap-system.ory.

The method described in this paper appears to be quite general, and can be extended to
solve several problems in computational chemistry. GAP contains a large library of groups,
named small group library. The Small Group Library contains all groups of order up to 2000,
except for 1024, up to isomorphism. The function SmallGroup(n,i) returns the i group of
order n in the catalogue. Also, the functions NrSmallGroups(n) and AllSmallGroups(n) return
the number of groups of order n and the list of all groups of order n, respectively. It is
possible to work with the catalogue of groups of small order just using the functions described
above. However, the catalogue is rather large even though the groups are stored in a very
compact description.

The mathematical tools of group theory have been used extensively for the analysis of
the symmetry properties of physical systems. The symmetry properties of rigid molecules are
well known and so it is natural to investigate non-rigid molecules, Following Y.G. Smeyers
[2]. the non-rigid molecule group (NRG) will be strictly defined as the complete sct of the
molecular conversion operations, which commute with a given nuclear Hamiltonian operator,
limited to large amplitude motions. In addition, these molecular conversation operations will
be expressed in terms of physical operations, such as rotations, internal rotations, inversions,
similarly as in the Altmann’s theory, rather than in terms of permutations and permutations-
inversions. This way of expressing the non-rigid operations is indecd more descriptive and
flexible [3].

The complete set of molecular conversion operations which commute with the nuclear

motion operator contains overall rotation operations, describing the molccule rotating as a



whole, and intramolecular motion operations, describing molecular moieties moving with
respect to the rest of the molecule. Such a set forms a group, which we call the Full Non-
Rigid Group (f-NRG).

Group theory for non-rigid molecules is becoming more and more relevant and
numerous applications to large amplitude vibrational spectroscopy of small organic molecules
have appeared in the literature [4-11].

In 1963 Longuet-Higgins [12], investigated the symmetry groups of non-rigid
molecules, where changes from one conformation to another can occur casily. In many cases
these symmetry groups are not isomorphic with any of the familiar symmetry groups of rigid
molecules and their character tables are not known. It is therefore of some interest and
importance to develop simple methods to calculate these character tables, which are needed
for classification of wave functions, determination of selection rules, and so on.

The method, as described here, is appropriate for molecules which consist of a number
of XHs groups attached to a rigid framework. An example of such a molecule is tetraamine
platinum (1), which is considered here in some detail. It is not appropriate in cases where the
framework is linear, as in ethane, but Bunker [13] has shown how to deal with such
molecules. To compute the character table of this molecule we use [14,15] for the standard
notation and terminology on character theory.

Lomont [16], has given two methods for calculating character tables. These are
satisfactory for small groups, but both of them require a knowledge of the class structure and
hence of the group multiplication table and they become very unwieldy as soon as the order of
the group becomes even moderately large. For non-rigid molecules, whose symmctry groups
may have several thousand elements, they are usually quite impracticable. We show that in
such a case GAP is a useful package for computing the character table and even the group
structure.

The alternative approach is less mechamcal, requiring a certain amount of thought, but
it is nevertheless simpler in practice. This involves two steps: first, by the decomposition of
the group into classes and second, by the determination of sets of basis functions for certain
representations, the characters are then determined.

Let G be a group and N be a subgroup of G. N is called a normal subgroup of G, if for
any geG and xeN, g'xgeN. Morcover, if H is another subgroup of G such that HAN = {e}
and G = HN = {xy | xeH, yeN}, then we say that G is a semidirect product of I{ by N
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denoted by HAN. It ts a well-known fact that every semidirect product of H by N, completely
determines by a homomorphism a: H — Aut(N), where Au(N) denotes the full
automorphism group of N(for details see [15]). We now suppose that Ggas is the r-NRG of
trimethylamine. In [17] Smeyers and Villa investigated the r-NRG of planar trimethylamine
and proved that this ts a group of order 324. They showed that this molecule has a pyramidal

inversion and so the order of the r-NRG of trimethylamine is 648. Moreover, Ggag = [Ul AW

Al A [Cé )<C§2><Cé ] x V', in which for groups A and B, A A B denotes the semidirect
i 3
product of A and B, A x B denotes the direct product of A and B and U', W', I, Cé i C; )
' ]
Cé; and V' are subgroups of Ggqy defined as follows:

U=[E+ULW=[E+W+W |, I'=[E+1],
Vis(E+P)Ci=[E+ ¢+ é3j2];j= 1,2,3.
For basic properties of non-rigid molecule group and information en r-NRG and f-NRG the
reader is referred to [2,18].

In [19] Stone described a method which is appropriate for molecules with a number of
XH; groups attached to a rigid framework. It is not appropriate in cases where the framework
is linear, as in ethane and dimethylacetylene.

In [20, 21]), the present author investigated the f-NRG of tetraamine platinum(Il) with
the symmetry group Cy, and the f-NRG of cis- and trans-dichloro-diammine platinum(Il). In
this paper, using the mathematical software GAP, we calculate the f-NRG of tetraamine
platinum(Il) with the Cyy point group and prove that it is a group of order 5184 with 43
conjugacy classes. Also, we compute the character table of this group. Our notation is

standard and taken mainly from [2,14,15].

EXPERIMENTAL

In order to deduce the character table of a group, we have to know first the number of
classes, as well as the number of elements in each class. As it is well known, the number of
classes gives the number of irreducible representations. For every clement x of a group T, the
subgroup Ci(x) = {y € T | xy = yx} is called the centralizer of x in T. Morcover, Z(G) =

ACr(x). when x varies on G, is called the centre of G and G is called centreless if (Z(G)| = 1.
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If T is finite, then by a well-known theorem in group theory |Cr(x)| = |TY|Cly(x)|, in
which Cly(x) is the conjugacy class of x in T [14]. Also, |[Cy(x)] and [Cly(x)] are called the
centraliser order and conjugacy length of x in the group T, respectively. To simplify our
argument we denote by na, nb, nc, ... the different conjugacy classes of elements of order n in
the group T.

For a given group, G, Exp(G) denotes the least positive integer for which every element
of G to the power of this integer is the identity element of G. If |G| = p"a, where p is a prime
number and a is an integer which is not divisible by p, then by a well known theorem on finite
groups, G has a subgroup of order p", which is called the Sylow p-subgroup of G. Smeyers
and Villa [17] derermined the character table for the triple equivalent methyl rotation and
pyramidal inversion in trimethylamine. Using GAP-SYSTEM we first present another
approach to calculate these character tables and then we compute the character table of
tetraamine platinum (II) with the point-group symmetry Cqy. We will see that the later is a

group of order 5184 with 45 irreducible characters.

RESULTS AND DISCUSSION
In this section we first present a new method to compute the character table of the triple
equivalent methyl rotation and pyramidal inversion in trimethylamine. As we mentioned

before, Goas = [U' AW AT A [Cg x C% XCZ”: ] % V'. By a well-known fact in finite groups, if
1 2 L}

G = H x K then every conjugacy class of G is the product of a conjugacy class of H and a
conjugacy class of K. A similar fact is true for the irreducible characters of G. Thus it is
enough to compute the character tables of the group Gig = [U' AW'] A L [Cyx C3xCs). To
do this we note that by equations (2) and (6) of [17} Gjpa 1s a centreless group of exponent 18.
Also, by these equations Gspq has a normal Sylow 3-subgroup. Using these facts and the Small

Group Library of GAP, we write a GAP-program, as follows:
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gap> X:=[];

gap> n:=NrSmallGroups(324);

gap> foriin {1,2..n} do

gap> a:=SmallGroup(324,i);

gap> b:=SylowSubgroup(a,3);

gap> e := Size(Centre(a));

gap> if [sNormal(a,b)=true and IsAbelian(a)=false and
Exponent(a)=18 and e=1 then Add(X,i);fi;

gap> od;

In this program the command “NrSmallGroups(324)” computes the number of non-
isomorphic groups of order 324. Also, we can see that the output of this program will be the
set X = {36,37,39,40,41,118,119,120,123,125}. This shows that there are only ten groups of
order 324 which are a semidirect product of a group of order 12 and an elementary abelian

group of order 27. The arrays of G3»4 musi be integral. Using this fact, we write another GAP-
program, as follows:

gap> X =[36,37,39,40,41,118,119,120,123,125];
gap> for i in x do

gap> a:=SmallGroup(324,i);

gap> b:=CharacterTable(a);

gap> t:=lrr(b),

gap> n:=Size(t);

gap> y:=[];

gap> forj in [1,2..n] do

gap> y:=Union(y,t[j]);

gap> od;

gap> if IsSubset(Integers,y)=true then Print(i,"\n");fi;
gap> od;
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The output of this program is 39 and so there is a unique group of order 324 which
satisfies the conditions of Smeyers and Villa [17]). Thus Gie = SmallGroup(324,39),
according to  the notation of GAP. Now we can see that the command
“Display(CharacterTable(SmallGroup(324,39)))” computes the full character table of Gyg

Next we compute the character table of {-NRG of tetraamineplatinum (II) with point
group symmetry Ca,. Firstly, we consider the point group of tetraamineplatinum (II) in the
case of rigid framework. We consider the full non-rigid group G (f-NRG) of this molecule,
cach equilibrium conformation of which has an ordinary point-group symmetry C,.

Using Figure 1, we define three permutations x, y and z, as follows:

x =(2,3,4,5)(6,9,12,15,7,10,13,16,8,11,14,17),
y=(2,3.4,5)(6.9,12,15,7,10,13,17,8,11,14,16),
2= (4,3)(2,5)(6,15)(7,17)(8,16)(12,9)(13,11)(14,10).

In fact in this figure we label the central Platinum atom by number 1, four nitrogen
atoms by 2, 3, 4 and 5, and, hydrogen atoms by 6, ... ,17. Thus (2,6,7,8), (3,9,10,11),
(4,12,13,14) and (5,15,16,17) label the four XH3-bonds of the molecule. Set A = {x, y, z}.

We claim that A is a generating set for G. Since Gaq = [U' AW A T' A [(:;5 x Cé xq ], we
3 2 3

can choose a set X containing 6 permutations of {1,...,17} such that two of them generate the

subgroup [U' AW'], one of them generates I' and other permutations generate C:; x C_.; x C; 3
1 2 3

We now write a simple program in GAP-language to find the order of G.

gap> G:=Group(X);
gap> H:=Group(x,y,z);
gap> P:=Elements(G);
gap> Q:= Elements(H);
gap> IsEqualSet(P,Q):
gap> Size(G);

The output of the program is “true” and 5184, which denotes H = G and the order of G
is 5184. Now we find a representative for all of the conjugacy classes of the group G. To do

this, we consider the following GAP-program:
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gap> E =] ;

gap>F:=[[;

gap> n:= NrConjugacyClasses(G);
gap> t:= ConjugacyClasses(G);
gap> foriin [1,2..n] do

gap> v:= Representative(t[i]);
gap> w:= Size(t[i));

gap> Add(E,v);

gap> Add(F,w);

gap=>od;

Figure 1: The structure of tetraaminoplatinum (II) with the Cqy symmelry group

The output of this program is n = 45, which shows that G has exactly 45 conjugacy
classes and so 45 irreducible characters. Also, the set E is a representative set for the
conjugacy classes of G and the set F contains the class lengths of the group G. We note that in
the command “t:=ConjugacyClasses(G)" the classes are computed by random search. In Table

1 we summarise the output of this program.
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For computing the character table of G, we run the simple GAP-program:

gap> d:=CharacterTable(G);
gap> Display(d);

Table 2 contains the output of the above program. If we need the sum of some of
irreducible characters of the group, say the a,", a,",..., a," irreducible characters of G, we can
do this by running the following program:

gap> t:=CharacterTable(G);
gap> R=[ a),..., a);

gap> J:=[);

gap> foriin R do

gap> g:= Irr()[1];

gap> Add(J,g);

gap> od;

gap> Sum(J);

CONCLUDING REMARKS

We can use this method for computing with small groups. When the order of the group
is large, the command “CharacterTable(G)” is interrupted. In this situation, one can find a
normal subgroup N of G and then compute the character table of G/N. Then lifting the
irreducible characters of G/N to the group G, one can determine some of the irreducible
characters of G. This method is usually very useful for completing the character table of the
group, see [19,20].

On the other hand, there is a well-known method for computing the irreducible
characters of a finite group with a subgroup of index 2 [14]. Using the mentioned functions in
GAP SYSTEM and the method of subgroups of index 2, one can find a new fast method to

compute the character table of groups of order greater than 2000, when the group has a

subgroup of index 2.
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Table 1: The Representatives of Conjugacy Classes of the Group G

7]
153

Representatives Size

(6,7,8)(9,10,11)(12,13,14)(15,16,17)
(12,13,14)(15,16,17)
(9,10,11)(15,16,17)
(9,10,11)(12,13,14)(15,17,16)
(15,16,17)
(6,7,8)(9,10,11)(12,13,14)(15,17,16)
(2,4)(3,546,12,7,13,8.14)(9,15,10,16,11,17)
9 | (2.4)3.5)(6,13)(7,14)(8,12)(9,16)(10,1 7)(11,15)
10| (2,4)3,5)(6,12,7,13,8,14)(9,16)(10,17)(11,15)

o0 =~ Y W B ) —

= — gt [N} 1 -
O e P menwem R ®

1 (7,8)(10,11)(13,14)(16,17)

12 (2,3,4,5)(6,9,12,15,7,10,13,16,8,11,14,17)

13 (2,3.4,5)(6,11,13,15)(7,9,14,16)(8,10,12,17)

14 (10,11)(16,17)

15 (6,7,8)(9,10)(12,13,14)(15,16)

16 (10,11)(12,13,14)(15,16)

17 (2.4)(3,5)(6,12,7,13,8,14)(9,15,10,17,11,16)

18 (2.4)(3,5)(6,13)(7,14)(8,12)(9,16,10,15,11,17)

19 | (2,4)3,5)(6,12)(7,13)(8,14)(9,15)(10,17)(11,16) 18
20 (13,14)(16,17) 12
21 (6.7,8)(9,10,11)(12,13)(15,16) 9
22 (9,10,11)(13,14)(15,16) 18
23 (2,4)(3,5)(6,12,7,13)(8.,14)(9,15,10,16)(11,17) 12
24 (2.3,4,5)(6,9,12,15,7,10,13,17,8,11,14,16) 9
25 (2,3,4,5)(6,10,14,17)(7,11,12,16)(8,9,13.15) 18
26 (3.5)(7.8)9,15)(10,17)(11,16)(13,14) 12
27 (3,5)(7,8)(9,16,11,17,10,15)(12,13) 9
28 (3,5)(9,15)(10,16)(11,17) 18
29 (3,5)(6,7,8)(9,16,11,15,10,17)(12,13,14) 18
30 (3,5)(9.16,10,17,11,15)(12,13,14) 18
3i (3.5)(6,7,8)(9.17)(10,15)(11,16)(12,14,13) 18
32 (3,5)(9,16,11,15,10,17) 18
13 (3,5)(6,8,7)(9,15)(10.16)(11,17)(12,14,13) 18
34 (3,5)(9,17)(10,15)(11,16)(12,13,14) 18
35 (3,5)(6,7,8)(9,15,11,17,10,16)(12,14,13) 18
36 (2,3)(4,5)(6,9,7,11,8,10)(12,15)(13,17)(14,16) 18
37 (2,3)(4,5)(6,11,8,9,7,10)(12,17,13,16,14,15) 18

38 | (23)4,5)(6.10)(7,9%8.11)(12,15)(13,17)(14,16) | 18
39 | (23)4.5)(6.9,7,11)(8,10)(12,15)(13,17,14,16) 18

40 (3.5)(7,8)(5,15)(10,16,11,17) 18
41 (3,5)(6,7)(9.16)(10,17,11,15)(12,13,14) 18

2 | (23)4.5)6,9,7,11)(8.10)(12,15)(13,16,14,17) 18
43 (2,5)(3,4)(6,15,7,17.8,16)(9,13,11,12,10,14) 18

44 | (2.5)(3.4)6,17,7,16,8,15%9,12)(10,13)(1 1,14) 18
45 | (2,5)(3,4)(6,16)(7,15)(8,17)(9,14)(10,12)(11,13) 18
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Table 2: The Character Table and Power Map of the Group G
la 3a 3b 3c 3d 3e 3f 6a 2a 6b 2b 12a4a 2c 6c 6d Ge 6f 2d 2¢ 62 6h

2p la 3a 3b 3¢ 3d 3e 3f 3a la 3c la 6a 2a la 3¢ 3e 31 3c la la 3¢ 3¢
3p la la la la la la la 2a 2a 2a 2b 4a 4a 2c 2¢ 2c 2d 2d 2d 2e 2b 2e

5p la 3a 3b 3¢ 3d 3¢ 3f 6a 2a 6b 2b 12ada 2c 6¢c 6d Ge 6f 2d 2e 6g Gh
7p 1a 3a 3b 3c 3d 3e 3f 6a 2a 6b 2b 12ada 2¢ 6¢ 6d Ge 6f 2d 2e 6g Gh

11pla 3a 3b 3¢ 3d 3c 3f 6a 2a 6b 2b 12ada 2¢c 6¢c 6d 6e 6f 2d 2e 6g Oh

lllll 11[0000&200002ZQQOOOOOOUDOOOOOOOOOIII..I.-I.OO

TR o il
—— e — — 224«17_“7_.0044000044440000444444..00_00000000
llllllll 7_227_.._7..3.0011100007&7..7.».&.000011!_:4.I..J.OA-.OOOOOOO
llllllll 22!_..QJAJ_OOA)..QOO00.1.11IOOOOQAU_AIHZA/_AAO“I..OOOOOOO
llllllll QQQnu_?HZUOIIQQQn/_HOOOOOOOO.I..I..4'11400000000
—— v — n.d_n.u.nl.._42200444444000000004444440@00000000
.I..I...I..I.llv.....I.I_.OOOGOO00000000000027:%9._000000000000000

11111111 000000000000000000'.411000000000000000
111111 1]4&22«/,_4%00]10000000043.&1@‘...I..Il]ln-JOOAwOOOOOO
lllll .I.Il.lqd.ﬂd_zq/.ﬁ/_.n}.h0044000000004444J.44444000.0000000
llllllll Q.J.Z«I.w;..&ﬂOQQOUOOﬂVDOO]]11222427u004000000
111.[]..1.[.122222244224444555544442222220.0m0,0444444
llllll 1122222244225555.4_.44444447.2227.2M0.ﬁ°ﬁ444444
lllllll = NSRRI i el i i i e R i L CLEL LG L GIROY
.I..I.]..ll.l.]1122222244552222?_2222227_55555.34440_00m"0_0nx.v44
11[!111!{7m22222444.-42222222«/._2227h444444444111144

llllllll 227_222442244«.44444455557.222220@0.00444444

X
A
X3}
Xl
L)

=~

Xao

2 2R
LI

%33

R R R ReR S SR 2R DS F N EL oA
P Gl S e B R  E aa
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Table 2: (Continued)

D T e L 2200000000000044440000000000000444400
lllllll 12200000000000022220000000000000]1]_»\100
1\127.0000000000001!]]00000000000002222nuo
e e 7._200000000000000000000000000000000000

.l.l_.ll..l..11_.100?_.2000000000@00000000000000000000000
1I...I1_41110022000000000000004444000000000444400
11_.1!..1_.11,10022000000000000001ll1000000000222200
1.|_:l]1...l410027__0000000000000023_92000000000]..!]..100
111141.1.......00000022002424114422224427._27..00000003_2
—_—— e~ — 10000002200I11122222222222244000000022

00000022332222444427.225_3]111000000044

:
ST
lll14.,._,440000002233444422222222141155000000044

llll4441_.0000002233222222224444115511000000044
llll444100000023_334.141111..41_,141141.1]..1000000011_.
lllllll 1_..00000023_OOZQ244422414122442200000007__2
—— o — 0000002266444444444444222222000000038
1111.444400000022l100000000000011]411000000000
l.l.llll440000007__2&200000000000027.2127..2000000000
ll.lll.._.11000000000000000.2420000000000000000000

I..dl.1].1]...1000000000000001]..1.40000000000000000000

|1]11111|.0000220000000000000000000000000000000

4b 12b4dc 2f 61 2¢ 6i 6k 61 6m6n 6o 6p 6q 6r 2h 4d 4e 12c4f 6s 6t 2i
2b 6e 2d la 3c la 3a 3d 3c 3c 3c 3e 3f 3b 3a la 2b 2c 6d 2b 3f 3b la
4b dc 4c 2f 2f 2g 2g 2g 2g 2g 2g 2g 2g 2h 2h 2h 4d de de 4f 2i 2i 2
4b 12b4c 2f 61 2g 6 6k 61 6m6n 60 6p 6q 6r 2h 4d 4e 12c4f 6s 6t 2i
4b 12bdc 2{ 6i 2g 6 6k 61 6m6n 60 6p 6q 6r 2h 4d de 12c4f 65 6t 2i
4b 12bdc 2f 61 2g 6] 6k 6l 6m6n 60 6p 6gq 6r 2h 4d de 12c4f 65 6t 2i

= A = lHuUu.hIﬂuo.m..l,_n”.v\,.u..n..mnn,ﬂw;.w,!‘.\:u?ﬁﬂﬂmmnv_nuﬂ
=R RRR RS g R SRS NL LS RARRRRI RN
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