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Abstract

Let B(n,m) be the set of all bicyclic graphs on n vertices with a maximum matching
of cardinality m (m > 2). In this paper, we determine the graph with the largest spectral
radius among the graphs in B(n, m), when m > 5.

1. Introduction

In quantum chemistry the skeletons of certain non-saturated hydrocarbons are represented
by graphs. By Hiickel molecular orbital (HMO) theory, energy levels of electrons in such a
molecule are, in fact, the eigenvalues of the corresponding graph, which are closely connected
with the stability of the molecule as well as other chemically relevant facts |7, 17). Lovész and
Pelikan 23], Cvetkovié and Gutman 9] proposed that the spectral radius of the molecular graph
(of a saturated hydrocarbon) be used as a measure of branching of the underlying molecule. This
direction of research was cventually further elaborated, with emphasis on acyclic polyenes [19],
alkanes IISE, and benzenoid hydrocarbons [15. 16, 24]. To our best knowledge, the spectral
radius of bicvelic graphs was, so far, not considered in the chemical literature. On the othe:
hand, bicyclic graphs represent important classes of molecules, and their spectral radius was
much studied in graph spectral theory (see, e.g., (5, 27]). The evaluation of graph eigenvalues
were the topic of numerous papers (see, e.g., [3]-[6], (8] -[11], [13]-[16], {18)-[27]). Here we arc

concerned with bicyclic graphs.

“This work is partially supported by National Natural Science Foundation of China.
Temail: yuainei@awmss.ac.cn

Temail: fian®staffiss.ac.cn



2

In order to describe our results, we need some graph-theoretic notation and terminology.

Other undefined notation may refer to [2].

We consider only finite undirected simple graphs. ‘Let G = (V(G), E{(G)) be a graph with
vertex set V(G) and edge set E(G). A graph G' = (V(G'), E(G")) is a subgraph of G {written
G'CG)if V(G') C V(G) and E(G') € E(G); f G' # G, G is called a proper subgraph of G
and written as G' C G; if V(G') = V(G), G' is called a spanning subgraph of G. If W < V(G),
we denote by G — W the subgraph of G obtained by deleting the vertices of W and the edges
incident with them. Similarly, if £’ C E(G), we denote by G — E’ the subgraph of G obtained
by deleting the edges of £. If W = {v} and E’ = {xy}, we write G — v and G — xy instead of
G — {v} and G — {zy}, respectively. For a vertex of G', we denote by Ng(v) the set of vertices
adjacent to v in G and denote §(G) = min {|Ne(v)| : v € V(G)}.

Two edges of a graph are said to be independent if they are not adjacent. An m-matching
M of G is a set of m mutually independent edges. A vertex » is said to be M-saturated, if
some edge of M is incident with v; otherwise, v is M-unsaturated. If every vertex of GG is M-
saturated, the matching M is perfect. If G has no matching M’ with |M’| > |M|, then M is a
maximum matching; clearly, every perfect matching is maximum. We call the number of edges
in a maximum matching of G the edge-independence number and denote it by o’(G). An M-
alternating path in G is a path whose edges are alternately in E\ M and M. An M-augmenting

path is an M-alternating path whose origin and terminus are M-unsaturated

We denote by K, C, and P, the complete graph, the cycle and the path, respectively, each
on n vertices, and denote by rG the disjoint union of r copies of the graph G. If a graph G has

components Gy, Gz, ---,Gy, then G is denoted by Ui, Gi.

Let A(G) be the adjacency matrix of G, then det(A] — A(G)) is called the characteristic
polynomial of G and denoted by ¢(G: A). Since A(G) is real and symnmetric, its eigenvalucs are
veal. These cigenvalues of A(G) are independent of the ordering of the vertices of G, so they
are also called the eigenvalues of G. The largest eigenvalue of G is called the spectral radins of
G and denoted by \;(G). In particular, if G is connected, A(G) is irreducible and so A (G) has
multiplicity one and there exists a unique positive unit eigenvector corresponding to A (G) by

the Perron-Frobenius theory of non-negative matrices.

An important topic in theory of graph spectra is to determine the graphs with maximal or
minimal spectral radins in a given class of graphs. Let H(n,t) be the set of all connected graphs
with n vertices and n + t edges, where -1 <t < 12 n(n — 1) —n. Then H(n, —1) is the set of all
trees on n vertices. It is well known that the path P, alone has the smallest spectral radius and

the star K .y alone has the largest spectral radins among the trees on n vertices (6, 7, 23},
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The maximal spectral radius problem for H(n, t) has been solved by Brualdi, Solheid and Simi¢
3,27, 28] for 0 < t < 2 and by Bell [1] for t of the form (*7')-1 (5 <d <n-1).
In this paper, we consider the maximal spectral radius problem on the connected graphs

with the given size of maximum matching, i.e., with the given edge-independence number. We

denote

Hin,t,m) = {G: G € H(n,t) and a’(G) =m},

where -1 <1 < i n(n — 1) = n. For H(n,—1,m), Guo and Tan have obtained the following
result.

Theorem 1.1 [13]. Let Tj, be the tree as shown in Fig. 1. Then for each T € H(n,—1,m),

M) < \/% (n—m+1+\/(n~m+ 1)2—4(n—2m+1))

. and equality holds if and only if T =T, .

™ Ul (n,m) U(6,3)
Fig. 1
When t = 0, H(n,t,m) is the set of all unicyclic graphs on n vertices with o' = m. For

short, we denote it by L/(n,m). On the basis of the work of Chang and Tian [4], we have proved
the following result.

Theorem 1.2 (29). Among the graphs in U(n,m), U'(n,m) has the largest spectral radius,
except when n = 6 and m = 3, where UlY(n,m) is the graph on n vertices obtained from Cy by
attaching n —2m + | pendant edges and m — 2 paths of length 2 together to ene of three vertices
of Cs. When n = 6 and m = 3, U?(6,3) has the largest spectral radius among the graphs in
U(6,3), where U2(6,3) is the graph obtained by attaching three pendant edges to three vertices
of Cy, respectively. (U'(n,m) and U*(6,3) are showm in Fig. 1.)

< 2

B*(n,m) P{2,1,2) B*+{6,3) C(P(2.1,2))

Fig. 2

When ¢ = 1, H(n,t,m) is the set of all bicyclic graphs on n vertices with o’ = m. For
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short, we denote it by B(n,m). Let B*(n,m), P(2,1,2), B**(6,3) and C(¢(2,1,2)) are the
graphs shown in Fig. 2. When n = 2m, i.e., when the bicyclic graphs considered have a perfect

matching, Chang and Tian have proved the following resuit.

Theorem 1.3 [5]. Among the graphs in B(2m,m), B*(2m,m) has mazimal spectral radius
when m > 5, and P(2,1,2), B**(6,3) and C(P(2,1,2)) are the graphs with maximal spectral

radius when m = 2,3, 4, respectively.

In this paper, we show that B*(n,m) has the largest spectral radius among the graphs in
B(n,m), when m > 5.

2. Preliminaries

Since the spectral radius of G is the largest root of the equation ¢(G;)) == 0, we have

$(G; A) > 0 for all A > A1(G). Then we immediately get the following results.
Lemma 2.1. Let Gi and G be two graphs.
(1) [7) 11, 22] [ $(G1;2) < $(G2; A) for A 2 Mi(Ga), then Ay(G1} > M(Ga).
(2) If $(G1;\) < 9(Ga; A) for X 2 M (Gh), then A(Gh) > M(Ga).

Proof. (2) We prove it by contradiction. It is easy to see that ¢(Gy;A) > 0 for A >
A1(Gh) and (G2 M(G2)) = 0. If A1 (G2) 2 Ai(Gh), then ¢(G1; M(G2)) 2 ¢(Ga; Mi(Ga)), which
contradicts that ¢(G1; ) < ¢(Ga; A) for A > A (G1). Therefore, Ai{(G1) > M (Ga). «

It is well known that if G’ is a proper spanning subgraph of a connected graph G, then

A (G) > Mi(G'). Moreover, we have the following results.

Lemma 2.2 [12, 21, 22].
(1) Let G be a connected graph and G' a proper spanning subgraph of G. Then

&(G'; A) > 9(G:A) for A = M(G).

(2) Let G', H' be spanning subgraphs of connected graphs G and H, respectively, and \(G) 2
M), and G’ is a proper subgraph of G, then

H(G U N) > ¢(GU H;A) for A 2 M(G).

Lemma 2.3 (7, 26]. Let v be a verter of G and C(+) the set of oll cycles containing v.

Then the characteristic polynomiel of G salisfies

(G:A) = Ag(G — v X) — ZQ(C ~{u, vl A) -2 Z HG\V(Z):}),
L2 Ze Clvy

where the first sutnmation ettends over all vertices adjucent to v.
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In particular, when » is a vertex of degree one in the graph G and u is the ymique vertex

adjacent to v, ¢(G;A) = A¢(G = u; A) — ¢(G — {u,v}; X).

Lemma 2.4 (7, 26]. Let e = uv be an edge of G and C(e) the set of all cycles containing e.

The characteristic polynomial of G salisfies

HGN) =¢(G —e:X) —9(G ~ {wvhA) =2 37 HC\V(Z):A)

Ze Cle)
Lemma 2.5 [7]. If G1, G2, -, Gt are the components of a graph G, we have
t
#(G:2) = [T (G A).
i=1
Lemma 2.6 [2]. A matching M in G is a mazimum matching if and only if G contains
no M -augmenting path.

Lemma 2.7 [29]. Let G be a graph inld(n,m) and G ¥ C,, where n > 2m. Then there are

‘an m-matching M and a pendant vertez v such that M does not saturatc v.

According to the proof of Theorem 1.3, we have the following result.

Lemma 2.8 [5]. Let G be a graph in B(2m,m) (m 2 5) end G # B*(2m,m). Then
&(G;A) > ¢(B*(2m,m); ) for A > A\ (B*(2m,m)). Therefore, \{(G) < \(B*(2m,m)).

3. Main results

A cycle in a graph is said a minimal cycle if no other cycle is contained in it. Each bicyclic
graph G in B(n,m) has exactly two minimal cycles. Furthermore, B(n,in) consists of the
following two types of graphs. One type, denoted by B;(n,m), are those graphs whose two
minimal cycles have at least one vertex in common. The other type, denoted by Ba(n,m),
are those graphs whose two minimal cycles have no vertex in common. Obviously, B(n,m) =
By(n,m) U Ba(n,m).

Tn order to prove our main result, we first present two useful lemmnas.

Lemma 3.1. Let G be a graph in B(n,m) (n > 2m, m 2 3) and §((7) = 2, then there exists

a graph G’ in B(n,m) satisfying the follounng three conditions:
(1) 6(G") = 1;

(2) there ave a mazimum matching M of G' and o pendant verter v of G' such thet v is

AM -unsaturated;
(8) (G A) < ¢(GA) for A 2 M(G).

Proof. Let G be a graph in B(n,m) (n > 2m, m > 3) and §(G) = 2. Denote by C,,

and Oy, the two minimal cycles of G, respectively.  Without loss of gencrality, we assume
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ny > ng. Obviously, G must belong to one of the following three types of graphs shown in Fig.
3. Furthermore, n = 2m+1. (Otherwise, n > 2m+-2. Since P, is a proper spanning subgraph of

G, &'{G) 2 o/(P,) 2 m + 1, which cantradicts that G € B(n,m).) We distinguish the following

two cases:
v o
Uy ~ .
uz
Gy Bag G L A Coa
Fig. 3

Case 1. G € By(n,m).

Then G belongs to one of the first two types of graphs shown in Fig. 3. Since n = 2m + 1

and m 2 3, G is neither G} nor G2 (as shown in Fig. 4). Hence n; > 4.

ey wy
I E-: ]m E ]
Gy Gz Gy
Fig. 4
Take a common vertex uy of Cy, and Cp, such that there is a vertex v € V/(Cy,) \ V(Ch,)
adjacent to u. Let u; be the vertex of Cy, adjacent to v (as shown in Fig. 3). Since Cy, is 2
minhmal cycle of G, uyus # E(G). Denote G' = G + ujug — vuy. Noting that ny > 4, we have

G’ € B(n,m). Furthermore, G’ satisfies (1} and (2). Now we show that G also satisfies (3).

By Lemima 2.4, we have

HGN) = NG = X) = (G — {u, v A =2 Y GG = V(Z)A)

Ze Cluys;
(G N) = PG ~wmuaA) - o(G - (w12} M) =2 Z G = V(Z2);2).
Ze Clurwg)

where Cuyv) is the set of all cycles in G containing uv and C(ujuz) is the set of all cycles in
G’ containiug wyug. It is easy to see that G — wyw ¥ G' — wjug and G’ — {uy,ug} is a proper
spanning subgraph of G — {u;,v}. So we have

HG — w1 X) = @G - wyug; )
and

NG — {wy, w2} A) > @G — {w.wh;A) for A > A(G — {uy,v}).
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It is not difficult to see that T MG ~V(Z)AN =A ¥ (G - V(Z);)A). Since
Ze Cluyuz) Z€e Cluyv)
MlG) > 2,

T OHE-VZEN> T GG -VI(ZNA) for A2 M(G).

Ze C(uyup) Z€ C{uyv)

Noting that A} (G) > A (G — {u1,v}), we have
(G X) < ¢(G;A) for A > N(G).

By Lemma 2.1 {1), Ai(G') > M1(G). Therefore ¢(G'; A) < ¢(G: A) for A > M (G').
Case 2. G € Bz(n,m). (G belongs to the third type of graphs shown in Fig. 3.)

If ny > 4, let up be the vertex of C,,, with degree three, v the vertex of Cy, adjacent to ug

and u; the vertex of Cy, adjacent to v.

If ny = ny = 3, then G is not isomerphic to G (as shown in Fig. 4 ), since n = 2m + 1 and
m > 3. Let uy be the vertex of Cy, with degree three, v the vertex of V(G)}\ V(Cy,) adjacent

to ug, and u, the vertex of G adjacent to v.

Denote G’ = G +uyug — uyv. Similarly to Case 1, we can show that G’ satisfies (1), (2) and
(3). L]

Lemma 3.2, Let G be a graph in B(n,m) (n > 2m) and §(G) = 1, then there exists a graph
G’ in B(n,m) satisfying the following two conditions:

(1) G' =G or $(G'; X} < S(G; N) for A 2 M(G');

(2) there are a mazimum matching M of G' and a pendant vertex v of G' such that v is

M -unsaturated.

Proof. Let G be a graph in B(n,m) (n > 2m) with §(G) = 1 and M be an m-matching of G.
If there is a pendant vertex v of G such that v is M-unsaturated, the result holds immediately.

So we suppose each pendant vertex of G is M-saturated.

Since G is a graph in B(n,m) (n > 2m) and §{(G) = 1, G has a proper connected subgraph H
such that /{ is a bicyclic graph and §(H) = 2. So G can be seen as a graph obtained by attaching
some trees ta the vertices of H. If a tree is attached to a vertex u of H, we denote it by T, and
call u the root of the tree T, or the root-vertex of G. Let w be a vertex of i with dg{w) > 3,
then w must be a vertex of a minimal cycle. We denote this cvele by Cg. Among two edges in
E(Cg) incident with w, there must be one edge belonging to E(G) \ M. We denote this edge
by wun, then G — wan is a n-vertex unicyclic graph with an m-matching M, where n > 2m.

Furthermore, a'(G — wwy) = o/(G) = m. (Since G —wwy C G, o'(G = wwy) € o'(G) = m.
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Noting that M is also an m-matching of G — ww, we have o(G — ww;) > m. Therefore,
o(G —wwy) =m.) So G —wwy € U(n,m) and G —wuy ¥ Cy,, where n > 2m. By Lemma 2.7,
there are an m-matching M’ of G — ww, and a pendant vertex v' of G — wiw such that v’ is

M'-unsaturated.

If v’ # w), then v' is also a pendant vertex of G. Noting that M’ is also an m-matching of
, ¥ &

G, let G' = G, then &' and M’ satisfy the requirements.
If o' = w), we distinguish the following two cases:
Case 1. There is a vertex v” of some tree T, such that v" is M'-unsaturated.

If " is a pendant vertex of (7, then G’ = G and M’ d satisfy the requirements. Otherwise, we
can find a maximal M’-alternating path P which starts from v” and terminates at a pendant
vertex v of G. Obviously, v is M’'-saturated. (Otherwise, P is an M'-augmenting path of G,
by Lemma 2.6, which contradicts o/(G) = m.) Then the symmetric difference M’ A P is an
m-matching M" of G and v is an M"-unsaturated pendant vertex of G. So G' = G and M"

satisfy the requirements.
Case 2. Each vertex of T}, is M'-saturated for any root-vertex u of G.

Let wy (we € V(Cg)) be the unique vertex of G — ww; adjacent to w; , then wa must be M'-
saturated. (Otherwise, M'U{wyw;} is an (m+ 1)-matching of G—ww,, which contradicts o’ (G-
ww;) = m.) So we always can find a maximal M’-alternating path P = wjwows - - - wingwoy)
of G — ww), obeying the principal as follows: for each 1 (1 < i < t), if woi, waiyy € V(H) and
Ng(waip) \ V(H) # 0, we choose a vertex from Ng(waiv1) \ V(H) as wais2. Obviously, waey
is M'-saturated, (Otherwise, P is an M’-augmenting path of G — wwy, by Lemma 2.6, which

contradicts &'(G — wwy) = m.)

If wnae4r is a pendant vertex of G, let M = M' A P and ' = G. Then G’ and M" satisfy
the requirements. Otherwise, P is a spanning subgraph of H. Then wy is the unique M’-
unsaturated vertex of G and w4y (0 < 1 £ £) is not the root-vertex of G. Then, except when
H = Gy (see Fig. 4), similar to the proof of Lemma 3.1, we can choose an appropriate vertex
141 (0 < J <t) and get a graph G' = G - U12,+|iliz+j+l +w§jﬂtu2‘j+l, such that G’ € B(n,m)
(n > 2m) and G’ satisfies conditions (1) and (2), where wy;,, and wy;,, are two vertices of [f
adjacent to wa;4y. If H = Gy, let G =G’ and then it is very easy to get an m-matching M”

and an AM"-unsaturated pendant vertex. This completes the proof of Lemima 3.2. L
Now we show our main result.

Theorem 3.3. Let G be a graph in B(n,m) (m 2 5). Then X\ (G) € \{B*(n.m)) and the
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equality holds if and only if G = B*(n,m), where \(B*(n,m)) is the largest root of the cquation
Mom—m+3IN —dA+n-2m+1=0.

Proof. By Lemnma 2.3, it is not difficuit to get that the characteristic polynomial of B* (1, m)
is ¢(B(n,m); A) = AV 2O - Y — (n— m+ 3002 — 4\ + 1 — 2m + 1). Siuce B*(n,m)
has a subgraph Cy, A((B*(n,m)) > 2. So A((B*(n,m)) is the largest root of the equation
Mom—m+3)M2 —dr+n-2m+1=0.

Let G be a graph in B(n,m) (m > 5) and G # B*(n,m). By Lemma 2.1, it is sufficient to
prove @(G5A) > @(B*(n,m);\) for A 2 A(B*(n.m)). We prove it by induction on n. When
n = 2m, the resnlt holds by Lemma 2.8. Now we suppose n > 2m and the results holds for all
the graphs in B(n — 1,m) which are not isomorphic to B*(n — 1,m). By Lemmas 3.1 and 3.2,
we have a graph G’ in B(n,m) satisfying the following two conditions:

(1) &' = G or (G5 A) < $(G; A) for A > M(G');

(2) therc are a maximum mwatching M of G’ and a pendant vertex v of G’ such that v is
M-unsaturated.

If G' & B*(n,m), the result holds immediately. So we suppose G’ ¥ B*(n,m). Let u be the

vertex of G' adjacent to v. Let v'u’ be a pendant edge of B*(n,m) attached to Cy (see Fig. 2).

By Lemma 2.3, we have

HG"; X AP(G' —v) — (G’ = {u,v}i A)
#(B*(n,m);A) = A(B*(n,m)—v';2) — ¢(B*(n,m) — {v,v'}; }).
It is easy to see that ' —w € B{n - I,m) and B*(n,m) — o = B*(n ~ 1,m). By the induetion
hypothesis,

&G = 1;0) 2 d(B (n,m) — v A) for A= (B (n.m) — ).

Since B*(n,m) — {v' 4’} = (m— 1) K2 U (n - 2) Ky, G 2 B*(n,m) and that G’ — {u, v} has an
(rn = 1)-matching, B*(n,m) — {v/, v’} is a proper spanning subgraph of G' = {u. v}. By Lenuna

2.2, we have
A(G = {u, vk A) < ¢(B* (n,m) = {v' '} A) for A 2 M(G' = {u,e}).

So ¢(G":A) > &(B*(n,m); A) for X > X (B (n.m)}, since \(B*(n,m)) > (B (n,m) =) >
MG = 1) > M{G' = {1, v}). Therefore,

(G A) > a(B (n,m); A) for A > A(B* (1, m)
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