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Abstract

The energy of a graph G is defined as the sum of the absolute values of
eigenvalues of G and the Hosoya index of a graph G is defined as the number of
matchings of G. In this paper, for two given positive integers p and ¢ (g > p) we
characterize the trees with a given bipartition {p,¢) which have the minimnal and

tlie second minimal energy of Hosoya index.

1. Introduction

Let T be a tree with n vertices and V(T) = {1,2,---,n} the set of vertices of T. The
adjacency matrix A(T) of T is the square matrix A(T) = (a;;) of order n, where a;; = 1

if vertices ¢ and j are adjacent, and 0 otherwise. The characteristic polynomial of T,
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denoted by ¢(T), is defined as ¢(T) = det(z] — A(T)), where I is the identity matrix of

order n. It is well known [2] that for a tree T with n vertices

(3]
¢(T) = 3 (-1)F m(T, &) =", ity
k=0

where m(T, k) equals the number of k-matchings of T. The Hosoya index (5] of a graph
13
G with n vertices, denoted by Z(G), is defined as Z(G) = 5 m(G, k).
£=0
Chemists know that the experimental heats of formation of conjugated hydrocarbons are
closely related to the total 7-electron energy. The calculation of the total 7-electron
energy in a conjugated hydrocarbon can be reduced (within the framework of the HMO
approximation) [3] to
E(T) = (M} + gl + -+ [Aal,
where Ajs are the eigenvalues of the corresponding graph T. For a tree (acyclic graph)

with 1. vertices, this er.ergy is also expressible in terms of the Coulson integral [4,5)] as

” i3l
E(T) = ?T /D+ z? In[1+§:m(T, k)z*]dz. @)
T 30

The fact thet E(T) is a strictly monotonously increasing function of all matching numbers
m(T,k),k=0,1,2,---,[3], provides us a way of comparing the energies of a pair of trees.
Gutman {4} introduced a quasi-ordering relation ” =" (i.e. reflexive and transitive relation)
on the set of all forests (acyclic graphs) with n vertices: if 7} and T3 are two forests with
n vertices and with characteristic polynomials in the form (1), then

T) = Ty & m(Ty, k) > m(T, k) forall k= 0,1,.--,[31.
If Ty > Ty and there exists an integer j such that m(T},j) > m(T2,j), then we write
T > T,

Here, by (2) and the definition of Hosoya index, we have
=T, = E(T\) 2 E(T), Z(Th) 2 Z(T2); (3)
Ty > Ty = E(TY) > E(Ty), Z(Th) > Z(Th). (4)
This increasing property of E has been successfully applied in the study of the extremal
values of energy in different classes of graphs (see [3,4,6-15]). Gutman {4] determined the

tree with the maximal energy, namely, the path. Furtliermore, he got

Tr-Wp>=Zp>Yn> Xy, )
E(T) > E(W,) > E(Z,) > E(Y,) > E(X,)
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for any tree T # X,, Yy, 2, Wa with 1 vertices, where X, is the star K n_1, Yy is the
graph obtained by attaching a pendent edge to a pendent vertex of I, ,_2, Z, is obtained
by attaching two pendent edges to a pendent vertex of K ,,-3, W, is obtained by attaching
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Fig. 1 The trees Xy, Yy, Zo and W.

a Py (here P, denotes the path with m vertices) to a pendent vertex of K3 (Fig.
1 shows the trees Xg,Ys, Zg and W,). Zhang et al [13] characterized the trees with
perfect matching having the minimal and the second minimal energies , which solved the
conjectures proposed by Gutman [3), that is, they proved that E(F,) < E(B,) < E(T)
for any tree T # F,, B, with n vertices having perfect matching, where F, is the tree
with n vertices obtained by adding a pendent edge to each vertex of the star Ky z_; (see
Fig. 2), and B, is the tree obtained from F,_o by attaching a P to the 2-degree vertex
of a pendent edge (see Fig. 2). On the other hand, for a given positive integer d, Yan et
al [12] characterized the tree with the minimal energy having diameter at least d. They

proved that if T is a tree with n vertices having diameter at least d, then E(T) > E(B, 4)
with

Fig.2 The trees I, B, and B, 4.
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equality if and only if T' = By 4, where B, 4 is the tree with n vertices obtained from the
path Py by attaching n — d pendent edges to an end vertex u of Py (see [ig. 2).

In order to formulate our results, we need to introduce some notation in the following.
Let G be a connected bipartite graph with n vertices. Hence its vertex set can be uniquely
partitioned into two subsets V| and V, such that each edge joins a vertex in V) with a
vertex in V,. Suppose that V4 has p vertices and V, has ¢ vertices, where p+¢ = n. Then

we say that G has a (p, ¢)—bipartition. Consider a star with p + 1 vertices. Attach ¢ -1

c o e &l
1 Kﬁ—v\ - 2 S
b~ 2 o -1 P D_—/r
;(_/ \\:n & ,\/ 2
D(p, @) F(p, @) (g>p>3)
‘:’\\ ? j ol O\ ? o
) i : e o \i/ o
p )
C"/
F(5,5) FG.7)

Fig.3 The trees D, and Fp ;.

pendent edges to a non—central vertex of the star. The resulting tree with p + ¢ vertices
has a (p, g)—bipartition. Denote the resulting tree by D(p, g) (see Fig. 3). We call D(p,q)
a double—star (see Brualdi et al {1]). If ¢ > p > 3, we suppose that F(p,q) is the tree
obtained from D(p — 1,¢) by attaching a pendent edge to one of the vertices of degree
one which join the vertex of degree ¢ in D(p— 1, q) (see Fig. 3). Il ¢ > p = 2, we suppose
that I7(2, q) is the tree obtained from the path P by attaching ¢ — 2 pendent edges to an
end vertex of Py (sec Fig. 4).
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Fig.4 The trees D(2,q), F(2,q), Ty and T.

Now we are in the positicn to formulate our main resalts.

Theorem 1.1 Let T be a tree with a (p,¢)—bipartition (p,g 2 1,p+ ¢ = 3). Then

(1) E@2\20+0-1)+2/prq- 1P -4p-Dig—1) +

V2o+a—1)~2/+g— 17— 4 - 1) D)

(@  Z(T)z2pg+1
with all equalities if and only if T is the double—star D(p, q).

Theorem 1.2 Let p and ¢ be two positive integers such that ¢ > p > 2, and let T be a
tree with a (p, g)—bipartition such that T # D(p,q). Then

E(T) > E(F(p,q)) and Z(T) 2 Z(F(p,q)) =2p9—p—29+3

with all equalities if and only if T = F(p,q).

2. Lemmas

Let G be a graph and uv an edge of G. We denote by G — uv (resp. G — u) the graph
obtained from G by deleting the edge uv (resp. the vertex u aid the edges adjacent to

u).
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Lemma 2.1[2] Let T be a tree with a pendent vertex u, and let v be the unique vertex
of T adjacent to u. Then

(T) = 2¢(T — u) — $(T —u — v).

Lemma 2.2[{14,15] Let T} and T» be two acyclic graphs with n vertices and with
characteristic polynomials

#(h) = %b,-z"-“ and (T2) = ff‘ibﬁ:“*ﬁ
i=0 i=0
respectively. Then 7y > T, if and only if 5 — b = 0 and (—1)*(d; — &) > 0 for
i=12---,[3}; and T} > T; if and only if T} = T and there exists an integer j €
{1,2,---, {31} such that (—-1)(b; - ) > 0.

Corollary 2.3 Let T and T¢ be two n—trees. Suppose that uv (resp. u'v') is a pendent
edge of T' (resp. T") and u (resp. u') is a pendent vertex of T (resp. T'). Let T} =T —u,
L=T-u—v,T{=T-vand =T -t -0 . Ty »T{and T > T}; or Ty » T
and T; = T, then T » TV,

Proof By Lemma 2.1, we have

&(T) = z¢(Ty) = ¢(T2) and G(T) = z¢(Ty) — ¢(T3).

Hence
HT) = ¢(T') = 2(¢(Th) — $(T1)) — (¢(T2) — ¢(T3))

Suppose that

(@) - (T])) = 3 @z and ¢(Tp) — ¢(T3) = §_ bz > 7.

>0 i>0

Then if Ty > 77 and Ty = Tj, we have ag = by = 0 and (—1)'¢; > 0 and (—1)'4; > 0 for
i > 1 and there exists at least a k such that (—1)*a, > 0. Hence, (—1)*(a; — b;_,) > U for
i > 1 and there exists at least a k such that {(—1)*(a; — bg—;) > 0. Nole that

BT) = 6(T") = S (a; — by_y)z" 2.

i1
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Hence, by Lemma 2.2 we have T » T'. Similarly, if T} > 7] and Ty > T then T » T".
The corollary thus holds.

Lemma 2.4[2] Let e = uv be an edge of graph G with n vertices. Then the number
m(G, 1) of i—matchings of G is determined by:

m(G,1) = m(G—un,i)+m(G—-u—-v,i-1) for i= 1,2,-~,[g-],
where m(T,0) = 1.
By the above lemma, the following lemma is obvious.

Lemma 2.5 Let T be an acyclic graph with n vertices (n > 1) and 7" a spanning sub-
graph (resp. a proper spanning subgraph) of T. Then T > T" (resp. T > T").

Lemma 2.6 For a double—star D(p,q), we have
(1) #(D(p,q)) =z [z' ~ (p+q—1)z" + (p— 1)(g — 1)};

(@) EDpe) =20 +a-1)+2/pra- 12— 4p-1g-1) +

V2@ +a~1-2/lprg- 1) —4p- D D;
() Z(D(.a) =pg+1.

Proof Let D(p,g) = T. It is easy to see that m(T,0) = 1, m(T,1) = p+¢g— 1,
m(T,2) = (p—1)(¢—1) and m{T,1} = 0 for i = 3,4, -, {"39]. Hence it is not difficult to
see that the assertions (1)—(3) hold.

Similarly, we can obtain the following.

Lemma 2.7 Let F(p,q) be the tree defined as above and ¢ > p > 2. Then
(1) ¢(F(p,q)) =2 — (p+q—1}a"* + (pg— g — 12" — (p - 2)(q — )zt
(2) Z(F(p,q)) =2pg —p— 29 +3.

Lemma 2.8 Suppose that T is a tree with a (2, ¢)—bipartition such that T # D(2,q)
and T # I(2,¢). Then T » I7(2, q).
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Proof Note that, if ¢ = 2, then there exists only one tree with a (2,2)—bipartition.
If ¢ = 3 then there exist exactly two trees (2,3) and I7(2,3) (=1%) which have a
(2,3)—bipartition. If ¢ = 4 then there exist exactly two trees D(2,4) and F(2,4) which
have a (2, 4)—Dbipartition. Hence we may assume that ¢ > 5. We proceed by induction on
q. If ¢ = 5 then there are exactly three trees D(2,5), F(2,5) and Tp shown in Fig. 4, each
of which has a (2, 5)—bipartition. It is not difficult to see that Ty > F(2,5) > D(2,5).
The lemma thus holds if ¢ < 5. We assume inductively that the lemma holds if [V3| < ¢.
Now we assume that T is a tree with n vertices, which has a (2, g)—bipartition, such that
T # D(p,q) and T # F(2,4) (¢ > 6). Let V; and V5 be the bipartition of vertex set of T
with |Vi|=2and |V =q. Let 7" =T —wand 7" =T — u — v. Then 7" is a tree with
2+q—1=q+1 vertices and T" is a forest with g vertices. Il u € Vj, then T" is a tree
with a (1, ¢)—bipartition. This shows that T' = D(2,q), a contradiction. Hence u € ¥
and 7" is a tree with a (2, ¢ — 1)—bipartition. It is not difficult to see that T' # D(2,q—1)
(otherwise T must be D(2, ¢} or I7(2,¢), also a contradiction). Note that, by Lemma 2.1,

HT) = z¢{T") - (T"), ¢(F(2,q)) = z¢(F(2,q— 1)) - ¢((g - 31 U 1)

We distinguish the following two cases.

Case 1 If T" = F(2,q—1), then T must be the tree 7} shown in Fig. 4 since T' # D(2,9)
and T # F(2,q). Note that

#(Ty) = 2% — (g + 1)z + (3¢ — T)z7 72,
and
#(F(2,q)) = 2% — (g + 1)27 + (2¢ - 3)a7 2.
It is obvious that if ¢ > 6, then T > (2, g).
Case 2 If T" # D(2,¢) and T" # I7(2,q), then by induction assumption we have
T - F(2,qg—1). (6)

Note that u € Vy. Hence v € Vi, Since T # D(2,q) and T 5% F(2,q), the degree dr(v)
of vertex v in T is not larger than ¢ — 1, that is, dr(v) < ¢— 1. Hence 7" is a lorest with

g vertices having at least ¢ + 1 — (g — 1) = 2 edges. Hence we have

T = (g=3) U ls (7)
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Hence, by Corollary 2.3, we have T > F(2,q). The lemma thus follows.

Lemma 2.9 Suppose that T is a tree with a (3,3)—Dbipartition such that T # D(3,3)
and T # [7(3,3). Then T » F(3,3).

Proof Note that there exist exactly three trees D(3,3), F(3,3) and P, each of which
has a (3, 3)—bipartition. It is not difficult to prove that Ps > F(3,3) » D(3,3). The

lemma thus follows.

Lemma 2.10 Suppose that T is a tree with a (3,4)—bipartition such that 7' # D(3,4)
and T # F(3,4). Then T > F(3,4).

Proof Since T # D(3,4) and T # F(3,4), T must be the one of the five trees Tjs
(: = 2,3.4,5,6) shown in Fig. 5. Note that
3(Ty) =z — 61° +82° — 2z, @(T3) = 2’ — 62° + 92° — 2;
¢(Ty) = " - 62° +92° — 3z, ¢(T5) =z — 62° + 9z° — 4x;
&(Te) = =7 - 62° + 102° — 4z, $(F(3,4)) = =" — 62" + 7z* — 2.
It is obvious that T; > F'(3,4) for i = 2, 3,4,5,6. The lemma thus holds.

Fig.5 The trees T», 73, Ty, Ts and Tg.
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3. The proof of main results

The proof of Theorem 1.1. By Lemma 2.5 and (3) and (4), it suffices to prove that
T » D(p,q) with equality if and only if T is the double—star D(p,q). If p = 1, then
T = D(1,q) and the theorem holds. The theorem also holds when g = 1. Hence we may
now assume that p > 2 and ¢ > 2. We proceed by inductiononn=p+gq. fp=¢=2,
that is p + g = 4, there exists only one tree Py = D(2,2) which has a (2, 2)—bipartition.
Hence the theorem holds if p+¢ = 4. We assume inductively that the theorem holds if the
number of vertices of a tree 7" is less than p+¢. Let V; and V; be the bipartition of vertex
set of T with |V}| = p and |V;| = ¢. Let u be a pendent vertex and uv a pendent edge in
T, where we may assume thatu € Viandv e Vy. Let 7' =T —vand 7" =T —u—w.
Then 7" is a tree with a (p — 1, ¢)—bipartition and T" a forest with p+ g — 2 vertices.
By Lemma 2.1, we have

#(D(p,q)) = z8(D(p — 1,9)) — ¢{(p - 2)P1 U Ky 01},

and

#(T) = z¢(T") — $(T").
Hence, by Corollary 2.3, it suffices to prove that T' = D(p—1,¢) and T" =~ (p—2)P U
Kig-i; 0t T' > D(p—1,q) and T" > (p— 2) P, U Ky 41
We denote the degree of v in 7' by dr(v). Since v € V3 and T has a (p, ¢)—bipartition,
dr(v) < p. Hence T" is a forest with at least p+g—1—p = ¢ — | edges. This shows
that m(T",1) > ¢ — 1. Hence T" » (p — 2)P, U K, 4—, with the equality if and only if
T" = (p—2)P,UKyq,. It is not difficult to see that 7" = (p — 2)P, U I{; ,—, if and
only if T = D(p,q). Hence if T # D(p,q), then T" > (p — 2)P, U Ky 4—;. On the other
hand, since 7" is a tree with a (p — 1, g)—bipartition with p+¢ — 1 (< p + q) vertices, by
induction assumption, we have 7" > D(p — 1,q). Hence, by Corollary 2.3, T > D(p, q) il
T # D(p,q). The theorem is thus preved.

Proof of Theorem 1.2. By (Z), (4) and Theorem 1.1, it suffices to prove that if T is &
tree with a (p, ¢)—bipartition (g > p > 2} such that T # D(p,q) and T # F(p,q), then
T > F(p,q).

By Lemma 2.8, T >~ I(2,q) if p = 2. Hence we may assume that ¢ > p > 3 and proceed

by induction on p +g.
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Ifp+q=6o0r7 thenp=¢=3o0r p=3and ¢ =4. Hence the theorem is immediate
from Lemma 2.9 and Lemma 2.10ifp+¢=6or 7.

We now suppose that p+¢ > 8 and ¢ > p > 3. We assume inductively that the result
holds if the number of vertices of a tree T is less than p +¢. Let u be a pendent vertex
of T and uv a pendent edge of . Let " =T —uand 7" =T —u—v. Then 7" is a
tree with p+ g — 1 vertices and T is a forest with p + g — 2 vertices. We distinguish the

following two cases.

Case 1 If u € W, then TV is a tree with a (p — 1,¢)—Dbipartition. It is obvious that
T' # D(p—1,q) (otherwise T must be D(p,q) or I(p,q), a contradiction). By Lemma
2.1, we have

é(T) = z¢(T") — $(T"),
$(F(p,q)) = 26(F(p - 1,9)) — $((p— )P U D(2,q - 1)).

We distinguish the following two subcases.

a2 i
— 5 —
. a f.,o RN G
. e &
p-3{ ¥y P33T
i I
o ou vi— g
T'I Tg

Fig.6 The trees Ty and Ts.

Subcase 1 If 7" = F(p — 1,4q), then T must be one of the trees T; and Ty depicted in
Fig.6 since T # D(p,q) and T # F(p,q). It is not difficult to find that

¢T7) = 2749 = (p+ ¢ = 12" + (pg + p— ¢ — 5)zP* 9™ — 2(p — 3)(g — 2)"*95,
H(Tx) =27~ (p+q— D)z"" 2 4+ (pg+p— g — )"+ -

(2pg — 3p — 5g + )27+~ + (p — 3)(q — 3)zP 9%,
$(F(p,g)) = 2P (p+q- D2+ (pg— ¢~ )" — (p - 2){q - 22798,

1t is obvious that T7 > F(p,q) and Ty > F(p,q). Hence T > F(p,q) if T' = [F(p — 1, ¢).
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Subcase 2 If T # F(p — 1,q), then the degree dr(v) of vertex v in T is not larger than
psince T has a (p, g)—bipartition. Hence dr(v) = p or dp(v) <p - 1.

First, we suppose that dr(v) < p~1. Then T" = T —u—v has at least p+¢—i—(p—1) = ¢
edges, that is, T" is a forest with p+ ¢ — 2 vertices having at least g edges. We now prove
the following:

claim 1
"= (p-3)UD(2,9-1). (8

In fact, m(T",0) = 1 and m(T",1) > ¢. Hence, in order to prove the claim we need
to show that m(T",2) > m((p — 3)H U D(2,¢ — 1),2) = ¢ — 2. If T" has a unique
connected component which is not an isolated vertex, denoted by TY', then T} # K ; for
j€{g,q+1---,p+q—3} since T has a (p, ¢)—bipartition and 7" = T'— u — v. Hence T}
is a tree with at least g edges which is not a star. By (5) we have m(T",2) = m(1},2) >
m(Ye41,2) = g — 2, where Yoy, is the trae obtained by attachiug an edge to a pendent
vertex of K . If there exist at least s (s > 1) connected components in 7" each of
which is not an isolated vertex, denoted by T7,T3',---, T/, then E’l ¢ > ¢gand ¢ > i,
where e; denotes the number of edges in T}” for i = 1,2,-- -, s. Hence it is not difficult to
see that m(T",2) > g — 2. The claim thus follows.

Note that T" is a tree with p+ g — 1 vertices and with a (p — 1, ¢)—Dbipartition such that
T'# D(p—1,q) and T # F(p — 1,q). Then, by induction assumption, we have

T'» F(p—1,9). (9)
By (8), {9) and Corollary 2.3, we have T > I7(p, g).

Now we assume that dr(v) = p. Since T has a (p,q)—Dbipartition and 7" # D{p,q),
T # F(p,q); T is obtained from the star K, by attaching some pendent edges to each
pendent vertex of Ky, Without loss of generality, we may assume that the pendent
vertices of Ky, are u, vy, vy, -+, vp-y and T' is obtained from K, by attaching s; pendent
edges to the pendent vertex v; of Ky for i = 1,2,---,p' (p < p—1), where 5; > 0. Note
that T # D(p,¢). Then p" > 1. It is obvious that :.g’l si=p+qg—1—p=g¢g—1. Note

that if s, and s, are two positive integers, then 5,5 > sy + s, — 1. Hence 3> si5; >
1<i<y<p’
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si+s3— 14 s3+ -+ sy =g—2. [tis not difficult to show that
o
mT,2)=(p-1)) s+ 3 ss;=@-Dg-1)+ 3 s
i=1 <<y 1<ici<p
z(p-1)g-1}+(g-2)=pg—p-§

m(T,3) = (p~ p') z Si15m + (P — 2) Z 515m

1<t<m<yp’ 1<t<m<yp’
=(p-2) > ssm=(P—2(g-2).
1<t<m<p’
Note that 3 sis;=s1+s2— 1+ 83+ +5y =¢g—2ifand only if p’ = 2 (without

1<i<i<p!
loss of generality, we may assume that s, # 0and s #0)and sy =1,sp =g—2;0rp' =2

and s; = ¢ — 1,52 = 1. Hence if p = g, then since T' # *(p, ¢) we have
m(T,2)2 (-2 3 sism>(@-2)g-2)
1<t<m<y -1

Note that
$F(p,q) =2 — (p+¢— 1)z 4 (pg— g — 1)27* — (p— 2)(¢ — D29~
Hence if ¢ > p > 3, we have T > F(p, q).

Case 2 If u € V4, then T' is a tree with a (p, ¢ — 1)—bipartition. If p = g, we may assume
that p’ = g and ¢’ = p. Then T is a tree with a (p’,¢’)—bipartition and 7" is a tree with
(p — 1, ¢')—bipartition (' — 1 < ¢’). By a similar reasoning as that in the proof of case 1,
we can prove that T > I7(p,g). When ¢ > p, then T" is a tree with a (p, ¢ — 1) —bipartition
and p < ¢ — 1. We distinguish the following three subcases.

=2

Fig.7 The tree Ts.
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Subcase 1 I[T' = D(p, g—1), then T must be the tree Ty shown in Fig.7since T # D(p, q)
and T # IF(p,q). Note that

¢(To) = 2"~ (p+q - 1)z" "+ (pg—p— 1)z~ (p-2)(¢-2)"*°  and
o(F(p,q)) =27 = (p+¢—1)z** "2 + (pg — g - )z?*9" — (p — 2)(g — 2)z”*7°.
It is obvious that Ty > F(p,q) when ¢ >p2 3.

Subcase 2 If T" = F(p,q — 1), then T must be one of the trees Ty and Ty depicted in
Fig.8 since T # D(p,q) and T # F(p, q).

Bear in mind the following equations:

8(Tho) = z¢(F(p,q— 1)) — ¢(D(p - 1,¢ - 1));

$(Tn) = z¢(Flp, g — 1)} = ¢(F(p - 1,4 — 1)};

S(F(p,)) = z¢(F(p,a— 1)) ~ 6((g — 3)K1 U PaU K1 poa);

B(D(p—1,q— 1)) = 2?42 (p+.g— 8)aPH 4 (p-2)(g — 9?0,

#(F(p-1,¢-1)) = 27— (p+q—-3)z"* '+ (pg—p—2q+1)=”** *+(p-3)(¢-3) ="
#g=3) P U P UK p3) =277 — (p— 1)a”T 0" 4 (p - 2)27*7°

It is obvious that if ¢ > p > 3, we have

D(p-1,¢-1) » (¢-3)AURUK,,» and F(p—-1,g-1) > {(g=3)URUK, ;.

By Corollary 2.3, we have

Ty > F(p.q), and Ty > F(p,q).

g3 3 a3
” —e . .
’f“,"‘ ;..”, for el
O — \J}:k,‘.ﬂ_ug.‘; = Pl __.__;l.“ m e e
=2 J v u u v
T Tu

Fig.8 The trees T\y and T),.
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Subcase 3 If T¥ # D(p,q¢ — 1) and T' # F(p,q — 1), then by induction assumption we

have
T' > F(p,q—1). (10)

Note that the degree dr(v) of v in T is not larger than ¢ since T has a (p, g)—bipartition
and T # D(p,q), T # F(p,q), that is, dr(v) = g or dr(v) < g — 1.

First we suppose that dr(v) < g— 1. Hence T" is a forest with a (p—1,¢ — 1)—bipartition
having at least p+ ¢ — 1 — (¢ — 1) = p edges. By a similar reasoning as that in the proof
of Claim 1, we can prove that

T’t(qﬁg)PIUPQUIﬂJ,_g. (11)
Note that
¢(T) — 6(F(p,q}) = =[§(T) = ¢(F(p,q — 1))} - [¢(T") — $((g — )L U R U Ky p..2)).

Hence by (10) and (11), we have T > F(p, q).

Now we assume that dr(v) = ¢. By a similar reasoning as that in the proof of Subcase 2,
we can prove that T > F(p, q).

The theorem has thus been proved.
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