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Abstract

Interpretation of thermodynamic equilibrium on the basis of graph theory predicts the
existence of exotic phases in multicomponent systems with at least three independent
components. The difference between normal and exotic states results from the difference in
topology of the graph of state. We discuss under what conditions the transformation of the
normal phase into the exotic phase can occur in the complex system. The knowledge of such
conditions may be of importance for materials chemistry in search for the systems that form
stable exotic phases.
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Introduction

For many years different authors suggested the use of planar graphs in thermodynamic
equilibria [1-10]. It seems, however, that most of the suggestions were curiosities without any
practical consequences. In our recent work [9] we have shown that the use of graphs in

description of thermodynanic equilibria can, in simple way, offer new insights, hardly
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available with the use of standard thermodynamic description. The details can be found in

ref [9]; here we present only a brief summary

0

We consider thermodynamic systems consisting of P phases and C independent

constituents. We also assume that simple Gibbs phase rule is obeyed: f= C— P + 2, where f1s

the number of thermodynamic degrees of freedom. Thus we assume that the system is not

subjected to any external fields, and the component concentrations are constrained only by the

law of mass conservation. Consequently, as in our former work [9], we exclude the

thermodynamic states that correspond to azeotropes and, generally, to any congruent

transformations.

i

We introduce a two-dimensional surface, Z , defined by two coordinates that are functions

of thermodynamic parameters.

We select f points on this surface. Through the imposition of thermodynamic constrictions

of the reference state, each of these points has only one degree of freedom
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Figure I Examples of the graph of state for the three-phase (c, B. ¥), five-component (A. B.
C, 1. E) system. Graph G is iated with the foll g distribution of

between the phases: e = (A, B, C. DL E), i = (B, C): v = (E). For the meaning of R, see text
and TableaAl

3. The lines that link
the selected points on
the surface represent
individual independent
components  of  the
system. In this way, the
lines and points form a
planar graph with f
vertices and C edges.
The sequence of edges

enclosing an area on

the surface forms the face that represents a phase of the system. The composition of such

a phase corresponds to the sequence of edges. Phase transformations in the system can be

described by gluing and separating of two graph vertices. It is evident from the above

points that we are concerned with planar general graphs that may have multiple loops and

edges [5)

An example of the graph of state for the selected system with 5 independent components

(A, B, C, D, E) and three phases (o, P, v) is shown in Fig. | We have shown [9] that the

eraph representation can unequivocally ascribe a planar graph to the state of thermodynamic



fligure 2: Graphs of state of the one-phasc three-component (A. B, C) system. Fig.2A: ¢, graph
represents the normal one-phase state of the system: ¢, graph represents the exotic state of the
system. Fig. 2B:Projection of the graph for the normal state of four-components system. ¢, (C=4).

on the sclected two-dimensional surface gives the graph for the exotic state of three-component

system. G, (C=3)

equilibrium of the system. Individual thermodynamic equilibria can now be enumerated, and

allowed types of equilibria can be predicted Note, that the degree of complexity of the system
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does not affect critically the determination of the number and type of cquilibria in the system
All one-phase state equilibria in the system with C independent components can be
represented by a C-edge tree. At C = | or C = 2 such a tree will, of necessity, be a
nonbranched tree. The state represented by such graphs can be called normal. Starting from C
= 3, exotic states, represented by the branched trees and unavailable in simpler systems, may
appear in the system. Examples of the graph of state for all the types of one-phase equilibria
in a three-component system are shown in Fig. 2A.

Note that from geometrical point of view the graph for exotic state can be treated as a
projection on the two-dimensional surface of a certain graph for the normal state of the four-
component system. Consequently, two edges (B, @) and two vertices (2,4) of the graph
degenerate into one edge (BC) and one vertex (24), as can be seen in Fig. 2B. Generally, the
graphs for exotic states are formed by projection of the graphs for normal states in a
multidimensional space. It can be argued that the thermodynamically stable quasicrystals [11-
14] are the exotic states consistent with our representation. Quasicrystals were discovered in
1984 by Shechtman and his coworkers [11]. A 5-fold symmetry such a quasicrystal is forming
in Al-Mn alloy is forbidden for crystal lattices in the three-dimensional space. However, it is
allowed for crystal lattices in the n-dimensional space (n > 3) [12]. A projection of such
crystals onto the usual three-dimensional space gives a structure that has no three-dimensional
translation periodicity, characteristic for normal crystals, but has other symmetry elements
forbidden for normal crystals, eg. 5-fold axis. Quasicrystals obtained by Shechtman et al. by
rapid cooling of the Al-Mn alloy were found to be thermodynamically meta-stable [12]. Since
this pioneering work many other stable and meta-stable quasicrystals were found. While two-
component quasicrystals such as AI-TM (TM = Ir, Pt, Os, Ru, Rh, Mn, Fe, Co, Ni, Cr); Mn-
Si, Cr-Ni, V-Ni obtained in different laboratories are meta-stable [14], addition of the third
and consecutive components usually results in thermodynamic stabilization of the system,
vielding stable quasicrystals such as Al-Ni-Co; Al-Cu-Co; Al-Cu-Co-Si; Al-Mn-Pd; Al-Li-
Cu; Al-Pd-Mn; Zn-Mg-RE (RE = La, Ce, Nd, Sm, Gd, Dy, Y) [14]. Up to 2000 all known
stable quasicrystals contained at least 3 components. In this year Tsai et al. [16,17] reported
the formation of stable quasicrystals in binary alloys: Cds;Yb and Cd;7Ca;. These
quasicrystals were obtained by congruent solidification, while most ternary and quaternary
quasicrystals were obtained in non-congruent transformations, Lograsso [18} obtained

Cds7Yb quasicrystal in macroscopic amounts, ~0.75 cm?, using very pure components (Cd —
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99.99%, Yb - 99.9%). Tracc contaminants were inevitably present, however. The role of such
contaminants in stabilization is unknown. Since 2000, no other stable binary quasicrystals
were obtained. It looks as though the Tsai's discovery invalidates a paradigm on the role of
three components in the stabilization of quasicrystals. We still believe that only at least three-
component systems are capable of forming stable quasicrystals. Exceptional are only such
two-component systems that feature equilibrium points for congruent transformations on the
phase diagram. Equilibrium for such points cannot be represented by a planar graph on the £
surface [9]. Instead, the Gibbs phase rule in a more general form has to be used: f=C- P+ 2
- ¢, where q is the number of relations between the component concentrations in individual
phases (for a simple congruent equilibriam g = 1). The problem of graph representation for
such states is not solved so far.

This way quasicrystalline state of matter can be placed in usual phenomenological
equilibrium thermodynamics. In such thermodynamics equilibrium for the system is described
as an extreme for certain thermodynamic function G(yy, x2.%3.... %), where 7y, are the
thermodynamic parameters. On the basis of the Gibbs phase rule this function can be given in
the form: G( a,(Ri,R;), a2(Rg, Ry),.., ac(Rm,Ry) ), where R; is the point on the two-dimensional
surface isomorphic with the surface of a sphere, described by Z=Ri( 1), x2.%3. ... %), =12
[9]. Each of the state functions defined this way can be represented by a graph. For instance,
the graph shown in Fig. 1 corresponds to the state function given in Appendix. The number
of non-isomorphic graphs of state for a given thermodynamic state corresponds to the number
of topologically different equilibrium states in the system. A state for the one-phase system
with one or two independent components can be represented by only one tree, with one or two
edges, respectively. As the number of independent components increases to three, two
topologically different equilibrium states become available: the first statc is represented on the
I surface by a non-branched tree, while the second one by a branched tree It seems natural to
assume that the first tree represents the typical state characteristic for one- or two-component

. systems, i.c. the crystalline state. However, the branched tree can only appear for at least
three-component systems and represents the quasicrystalline state. Such an assignment is
consistent with the fact that the branched tree on the two-dimensional surface can be obtained
by a projection of the non-branched graph from the three- or higher dimensional space. In a
similar way crystals from the n-dimensional space (n > 3) can be projected to give

quasicrystals in the three-dimensional space [12].
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It seems that only graph representation of equilibria states can rationalize the existence of

stable quasicrystals, and to find for them a proper location within the frame of

phenomenological thermodynamics. A question now arises, which complex thermodynamic

normal states can be transformed into exotic states. The answer is of obvious interest for

materials chemistry searching for new stable quasicrystals

Phenomenological thermodynamics of the transformation:

“normal state” —> ‘‘exotic state”
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Figure 5 Phase transformation normal one-phase system — lwo-phase
svstem. In brace brackets all possible graphs of state for the two-phase
system are giverm (i, j) denote the vertices of the normal G, graph that
are glued to form the graph for the two-phase system, Amow pointing 1o
the right behind the brace bracket indicates the possibility for the
formation of the exotic state from a given two-phase system; crossed
arrow indicates that the exotic state camnot be formed. Fig3A: ternary
systems; Fig. 313! quaternary systems, G = [(1. 2). (2. 3). (2, 4). {4, S)I:
Lq = 1(L2.(2.3).2.9), (2. 5)

that can exist as exotic states.

Since phenomenological
approach is on the macroscopic level,
we cannot establish at what values of
temperature, pressure, composition,
rate of cooling etc. the transformation
of a normal state into exotic state
occurs. However, we can pinpoint the

general features of the system that

indicate the possibility of such
transformation.
In agreement with graph

representation of equilibria, the state
phase transformations are described
either by gluing of two or more
vertices of the graph of state or by
separating  the  glued  vertices
Transformations of interest in this
least three

work must involve at

independent  components  because
branched graphs can exist only for
such systems.

Thus, we can formulate the

first intrinsic feature of the systems
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I All thermodynamic states whose normal stable phase can be transformed into exotic
stable phase possess at least three independent components.

A phase transformation ,one-phase x system” — , one-phase y system” must involve
the two-phase system as an intermediate. All possible channels for the transformation of the
one-phase system in the normal state (Gn graph of state) into the two-phase system are shown
in Fig. 3 for C =3 (Fig. 3A) and C = 4 (Fig. 3B). It is seen that, topologically, the one-phase
normal state at C = 3 can be transformed into four different types of the two-phase system,
while at C = 4 the number of such transformdtions increases to six. The change in
thermodynamic parameters can either transform the two-phase system back into the normal
one-phase system or transform it into ‘the one-phase exotic system, represented by the
respective branched tree (G. or G. ). It can be seen in Fig 3 that, at both C =3 and C = 4,
there are only two types of two-phase equilibria that cannot be transformed into the one-phase
exotic states. In the first system both phases contain all components (we will henceforth
denote as [n]+[m] a system containing ,,n” components in one phase and ,,m” components in
another). Another non-transformable type belongs, according to our notation, to {C]+1]
series — while one phase contains all components, the second one contains only one
component. Inspection of the topology of the graph of state leads to the following conclusion
p L One-phase exotic states can exist in the system for the following types of two-phase
equilibria: [C)+(1], [C]+{2], [C]H{3], ...., [C]+[C-1], where C23. The two-phase equilibria
[C]+[C] and some types of [C]+1] equilibria preclude the existence of exotic states. The
latter statement requires some comments. We will use the four-component system as an
example. If a crystal of such a system (i.e. a normal state) melts, and a liquid contains all four
components, the two-phase system that is being formed belongs to the [4]+([4] type, and the
transformation into the exotic state is excluded (see Fig. 3B). The situation of the two-phase
system [4]+[1] is less clear. Such an equilibrium is represented by the first and fifth graphs in
brace brackets in Fig. 3B. While the first graph cannot be transformed into a graph of exotic
state by taking apart glued vertices, the fifth graph can. A number of two-phase [C]+[1]
equilibria transformable into exotic states increases as C increases While at C<5 there is only
one such equilibrium, there are two at C=6, and three at C=7. Thus, only in [C]4[C]
equilibrium is the existence of exotic phases rigorously forbidden. In other systems,

representing probably a sizable majority of all available systems, exotic states are likely to be
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formed under suitable thermodynamic conditions. However, little can be said about such
conditions on the grounds of phenomenological thermodynamics

Conclusions

Complex thermodynamic systems, containing at least three independent components and
described by the two-phase equilibrium of the type [C]+[C-k], where k = 1, 2....C-1, can exist
as exotic states (i.e. quasicrystals) that differ by the topology of the graph of state from the

normal states (i.e. crystals).

Appendix
Table Al. Explanation of symbols and definitions
Symbols used in phenomenological Symbols for
thermodynamics thermodynamics using
graph theory
Degree of freedom I /
Pressure, temperature p,T T
Concentration of the i component < [
Number of independ. D C c
i™ thermodynamic parameter 1 € (T2 CaprCc) % € (P, TC1, CayeensCe)
Magnitude for the i™ parameter 1t e 5T, &theec”) wu'e )
in the reference state
Two-dimensional surface in the - Z=Ry( 1, 72, 13 %)y 1=1,2
space of thermodynamic parameters
K™ point on the £ surface - Re=(20" 2" 0 Het
(vertix for the graph of state) Ak At X6 )
Arguments for the state function X1 A2 X o Kt Ry,R; oy Ry
State function, G G, %2, %3, %) G (a(RiRp), a:(Riy Ry) ey
ac(RuyRa) )
Example of the state function for the G( A(Ry, Ry), B(R3,Ry), C(R3,R;), D(Ry,Ry), E(R,Ry) )
graph of state from Fig.1
Graph of state from Fig.1 at R, >R, G( A(R;, Rys), B(Ry3,Ra3), C(Rys,Rps), D(Ryy,Ry), E(RRy) )
(gluing of vertices in R;; as a result
of change in thermodynamic
parameters)
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