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Abstract

A modified version of Hosoya index of a graph G is defined as Z1(G) = ﬁ 1+23,
=1

where A; , j = 1,2,...,n, are the eigenvalues of G. If G is bipartite, then Z!
coincides with two previously considered modification of the Hosoya index. If G is
acyclic, then Z1(G) coincides also with the ordinary Hosoya index. We find an upper
bound for Z'(G) in terms of the number of vertices, number of edges and the first
Zagreb index, and characterize those graphs for which the upper bound is attained.
Similar results for bipartite graphs are also obtained.
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INTRODUCTION

The Hosoya indez of a graph G is Z = Z(G) = kgo m(G, k), where m(G, k) is the
number of k-matchings (i. e., number of k-element independent edge sets) of G , with
the convention that m(G,0) = 1 [1,2]. In the attempt to extend the applicability
of the index Z to conjugated m-electron systems, Hosoya el al. (3] put forward its
modified version, denoted by Z.

Let the characteristic polynomial of the graph G be of the form

UP”(Gr ’\) = E ag .An_k

k>0

and let i = v/—1. Then it is easy to show that

¢(G,!) =" Z(—l)k agk — ) )?(—1)’: A2k41 . (1)

k>0

According to [3], the modified Hosoya index (criginally called “modified topological

indez”} is defined as

Z=2(6G)= Y (-1) oz .

k>0

In view of (1),
2 = Re[(=iy" (G, )]

and, if A, A,..., A, are the graph eigenvalues (and therefore the zeros of the char-
acteristic polynomial),
Z = Re [f[(um,)} ’
i=1
In the above formulas, fZe[(] stands for the real part of the complex number ¢ .
If G is a bipartite graph, then all odd coefficients of the characteristic polynomial

are equal to zero, and then
Z=(~"¢(G,1) .
If, in addition, G is acyclic, then (—1)* ay = m{G, k) and Z reduces to the ordinary

Hosoya index Z .
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Short time after the introduction of the modified Hosoya index Z, Aihara [1]

proposed a closely related “tolal m-eleciron energy index” Z*, defined as

k>0 £>0

Z° = 2Z7(G) = |¢(G, 1) = \} {Z(—l)"azk} + {Z(—l)kauﬂ] )

In the case of bipartite graphs, Z* and Z are identical, but they differ for non-bipartite

graphs. Aihara [4] was first to report the expression

lf[(l +2)

for the calculation of Z* or Z of bipartite graphs. Eventually, the same expression
was much used in the theory cf the (ordinary) Hosoya index [5-9].

Athara used Z* in connection with the total m-electron energy E; , and established
the relation E, = 6.0846 log Z*. Except the work [4] there seems to be no other
chemical application of Z*. Hosoya used the difference AZ = Z — 7 for predicting
and rationalizing aromaticity of polycyclic conjugated molecules; he refers to AZ as

to the “aromaticity indez”; for details see [10].

GRAPH THEORETICAL PREPARATIONS

Let G be a graph of order n. We define an invariant of G, denoted Z'(G), by

7t = zt(@) = 1‘[ JI+N, (2)
=1

where Ay > Ay > --- > A, are the eigenvalues of G. As explained in the preceding
section, if G is bipartite, then the right-hand side of Eq. (2} coincides with both
Z(G) and Z*(G). I G is acyclic, then Z' coincides also with Z .
The first Zagreb indez of a graph G is defined as ¢ = i (d;)?, where dy,dy, ..., dna
are the vertex degrees of G; for details see the book [11] fnld the recent works [12,13].
A graph G is semireqular bipartite (of degrees ry and ) if it is bipartite, and
if cach vertex in the same part of its bipartition has the same degree (each vertex

in one part of the bipartition has degree r; and each vertex in the other part of the
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bipartition has degree ry). Clearly a regular bipartite graph is a semircgular bipartite
graph (r; = r2). Let G be a graph of order n and let its first Zagreb index be 8. It
is known [14] that A, > 1/8/n, and that equality holds if and only if G is a regular
graph or a semiregular bipartite graph.

In this paper we report an upper bound for the modified Hosoya index Z' in terms
of the number of vertices, number of edges and the first Zagreb index, and characterize
those graphs for which the upper bound is attained. For this we employ techniques
closely analogous to those used in the recent paper [15] and elsewhere [16,17]. Similar
results on a bipartite graph are also obtained.

We first consider general graphs.

BOUNDS FOR Z! FOR A GENERAL GRAPH

A strongly regular ¢raph G with parameters (n, k,p,0) is a k-regular graph on n
vertices, each pair of adjacent vertices having p common neighbors, and ezch pair of
non-adjacent vertices having o common neighbors. If ¢ > 1 and G is non-complete,
then the eigenvalues of G are k, s, and ¢, with multiplicities 1, m,, and m,, where
s and { are the roots of the equation 22 + (6 — p)z + (¢ — k) = 0, while m, and m,

can be determined from the equalities m; + m; =n —1 and k+ sm, + tm; = 0.

Theorem 1. If G is a graph with n > 2 vertices, m > 1 edges and first Zagreb indez

§, then
é 112 2mn — 6 (=12
NG < (14— 14 ——— " 3
”—(H) (J’n(n—l)) )
Equality in (3) holds if and only if G is either 2 K or K, or a non-complete con-
nected strongly regular graph with two non-trivial eigenvalues both with absolute value

\/(Qm —4m?fn?)f/(n—1).

n
Proof. By the arithmetic-geometric-mean inequality and 3 A} = 2m, we have
=1

R |

n=-1
n 1 W _ g2y -l
H(lﬂ?)s(*Z(lH?) =(1+2’"—ﬁ) .
=2 =t j=2
Hence

2y (mn2
ZHG) < (1 4 A2 (1 & M)

n—1



187

Note that the function

9 — 2 (n-1)/2
n—1 )

F(z) = (1 42%)'? (1 +
decreases for \/M < z € v2m, and that \/ém‘/n < \/51‘1 < Ay .Therefore
F(\) < F (y/8/n) . This proves (3).

It is easy to check that if G is one of the graphs specified in the second part of
Theorem 1, then equality in (3) holds.

Conversely, if equality in (3) holds, then by the above argument, Ay = /§/n. It
follows that G is a regular graph or a semiregular bipartite graph. If G is regualr,
then A; = \/6/7 = 2m/n. Then, according to [17], G is either § K or Ky or a non-

complete connected strongly regular graph with two non-trivial eigenvalues, both

with absolute value \/(2m —(2m/n)?)/(n —1). Suppose now that G is a semire-

gular bipartite graph. Since equality holds in the above arithmetic-geometric-mean

inequality, we have \/§/n = A; = =\, = /(2m — A?)/(n — 1), from which it follows
1

that § = 2m. Thus the degree of any vertexof Gis 1,i. e, Gis 5 K;. O

Remark 2. By the Cauchy-Schwartz inequality,
“ 2
4m? =3 dj| <né.
j=1
Therefore \/6/n > 2m/n and F(z) decreases for \/2m/n < z < v/2m. We have

NG < F (\/5/_,1) < F(2m/n)

which is an (n, m)-type upper bound for Zt.

BOUNDS FOR Z! FOR A BIPARTITE GRAPH

In order to estimate the modified Hosoya index of a bipartite graph, we need the

following:

Lemma 3. Let G be a connected bipartile graph with n vertices and m edges and the
first Zagreb indez §. Then § < mn, and equality holds if and only if G is ¢ complete
bipartite graph.
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Proof. Let £ be the edge set of G. For any edge uv € €, du +dy, < n. Then
§= )5 (d;)* = ¥ (d, +d,) < mn. Equality holds if and only if d, + d, = n for any
uv EJT‘,B, i e, il:lv('ex'fis a complete bipartite graph. 0O
A 2-(v, k, \)-design is a collection of k-subsets or blocks of a set of v points, such
that each 2-set of the points lies in exactly A blocks. If b = v, then the design is called
symmetric. The incidence mairiz of a 2-(v, k, A)-design is a v x b matrix B = [b;],
where b;; = 1 if the i-th point is contained in the j-th block, and b;; = 0 otherwise.
The incidence graph of a design is defined to be the graph with adjacency matrix
S 8], Ifv > k> A > 0 (when, by Fisher's inequality, b > v), then the incidence
graph of a 2-(v,k, A)-design has eigenvalues 7k, V7 — X, 0, =7 = X, —/rk with
multiplicities 1,v—1,b—v,v—1 and 1, respectively, where r = bi:/v; for more details
see [18].

Recall that the spectrum of a bipartite graph is symmetric w. 1. t. the origin.

Theorem 4. If C is a bipartite graph with n > 3 vertices, m > 1 edges and first
Zagreb indez &, then

) 9mn — 28\ "I
t < hal el R
Z(G)_(H—n) (1+ n(n—2)) . (4)
Equality in (4) holds if and only if G is either $Ky or Kpr with 1 < v < nf2

or the incidence graph of a symmetric 2-(v,k, A)-design with v > k = 2m/n and
A=k(k=1)/(v=1).

n=1
Proof. By the arithmetic-geometric-mean inequality and 2)3 + & A= 2m, we
=2
have 5 '
n-1 n-1 e 2\ n-2
1 2m — 2
Ufiddy s A2 = ol | :
]_l"_I:( J)_(n_Q;(H,) ==

Hence
ZHG) < (142 (1 +

Note that the function

2m — 2A2\ D
n—2 ) ’
H(z) = (1+2%) (1 +

decreases for \/2m/n < z < /m, and that \/2m/n < /6/n < A,. Therefore,
H(\) < H (\/§/n) . This proves (4).

2m — 227\ "2
n—2 )
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It is easy to check that if G is one of the graphs given in the second part of
Theorem 4, then cquality in (4) holds.

Conversely, if equality in (4) holds, then by the above argument, we sce that
A1 = f8/n. 1t follows that G is a semiregular bipartite graph. Since equal-

ity holds in the arithmetic-geometric-mean inequality given above, we have |);| =

V(2m = 2A7)/(n - 2) for 2 < 7 < n— 1. Hence we have the following possibilities:

either

(i) G has two eigenvalues with equal absolute values and then G = m K, , or

(ii) G has three distinct eigenvalues, i. e, A; = 0 for 2 < 7 < n -1, and then
éfn =AY =m and by Lemma 3, G = K, ., with 1 <r <n/2, or

(iii) G has four distinct eigenvalues, in which case, since 0 is not an eigenvalue and G is
bipartite semiregular, G is regular and connected, A; = 2m/n > y/(2m — 2A1)/(n — 2)

and therefore G is the incidence graph of a symmetric 2-(v, 2m/n, A)-design {19]. D

Remark 5. As in Remark 2, \/§/n<> 2m/n and H(z) decreases for \/2m/n <
z < y/m. Then for a bipartite graph G,

ZNG) < H (,/5,'") < H(@m/n) .
Hence for bipartite graphs a better (n,m)-type upper bound for Z!(G) is obtained.

When the number of vertices is odd, we have the following improvement of The-

orem 4:

Theorem 6. Let G be a bipartite graph with n > 5 vertices, m > 1 edges and first
Zagreb indezx &, where n is odd.

L Ifé/n>2m[(n—1), then

s Imn — 26\ "I/
ZNEY < [1+ =) 1+ ——

@s (1+3) (1+3555) @
and equality holds if G = K, n-, with 1 <1 < nf2 or G is the incidence graph
of a 2-(v, k, \)-design with k> X = bt 1)(1) 2 [

v(v —1)

2. If§/n < 2mf(n—1), then ZY(G) < 2™, and equality holds if G is the disjoint
union of mK; and (n — 2m)K, with | <m < n/2.
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P
Proof. Let p = (n—1)/2. Then Ay = 0 and 3 A} = m. By the arithmetic-
1=1
geometric-mean inequality and )F: /\? =1m,
i=1
Fh y n~3)f2
1 L ’ 9m — 222\ (
A<+ [ —a+2| =0+ (1+——" )
p—1 jurd n—3

There are two cases:

Case 1: §/n > 2m/(n —1). Since the function

2m — 2z (n=3)i2
+ —ﬁ—")
n—3

I{z)=(1+2Y) (1
decreases for /2m/(n — 1) <z < /m and {/2m/(n — 1) < /é/n < Ay, we sec that

Iy <1 (U‘J/n). This proves (5), and equality in (5) holds if and only if G is

a semircgular bipartite graph with A; = --- = A,. Hence equality in (5) holds if
U =K, ., with 1 <r <n/2or G is the incidence graph of a 2-(v, k, A)-design with
k(k—1)
E>Ai= -L—w——)(v—kl),
v(v—1

Case 2: §/n < 2m/(n —1). Then 2m < n - 1 [15]. Delete any n — 2m isolated
vertices from G 1o get a graph Gy. We have Z(G) = Z1(G;) < H(1) = 2™, and it
is easy to see that Z'(G) = 2™ if G is the disjoint union of m K3 and (n — 2m) K,
withl1 <m<nf2. O
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