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Abstract

We find extremal values of the connectivity index in the class HSy
of hexagonal systems with h hiexagons.

1 Introduction

The connectivity index ([17]) is one of the graph-based molecular structure
descriptors most widely used in applications to physical and chemical prop-
erties ([6,[12),[13]}). It is defined for a simple graph G with n(G) vertices,
as
;5 (G)
xe) =y e
1<i<j<n(G) -1 J

where m;; (G) is the number of edges in G connecting a vertex of degree ¢
with a vertex of degree 7.

One of the main problems in the mathematical literature of the con-
nectivity index is to determine extremal values of y in significant classes of
graphs ([1)-[5],{8]-[10]). We consider in this paper the class of hexagonal sys-
tems, graph representations of benzenoid hydrocarbons which are of great
importance in chemistry.

A hexagonal system is a finite connected plane graph without cut ver-
tices, in which all interior regions are mutually congruent regular hexagons
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(we exclude the hollow coronoid species from the class of hexagonal systems).
More details on these graphs can be found in ([7]).

The hexagons of a hexagonal system can be classified according to the
number and position of edges shared with the adjacent hexagons. Figure
1 shows the 12 different types of hexagons that can occur in a hexagonal
system.

Figure 1: Different types of hexagons and inlets in a hexagonal system

We can associate to each path u; ---u, of a hexagonal system S, the
vertex degree sequence (6y,,...,0y,). If one goes along the perimeter of S,
then a fissure, bay, cove and fjord, are respectively paths of degree sequences

(2,3,2),(2,3.3,2),(2,3,3,3,2) and (2,3,3,3,3,2)

(see Figure 1). The number of fissures, bays, coves and fjords are denoted
respectively by f(S),B(S),C(S) and F(S). The parameter

7(S)=f(S)+B(S)+C(S)+ F(S)

was introduced in ({14]), called the number of inlets of S, and a simple
relation with x was established; namely

x(8) = —— -ar($) (1)

where a = %@ >0.

If we restrict to catacondensed hexagonal systems, i.e. hexagonal sys-
tems with no internal vertices, then equation (1) can be used to determine
the extremal values of x over the class CHS) of catacondensed hexagonal
systems with h hexagons ([15]). Moreover, a complete description of the
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order relation induced by x over CHS}, is given in ([16]). We now approach
the problem of extremal values of x in the class HS,, of hexagonal systems
with h hexagons.

2 Hexagonal systems with minimal connectivity
index

In this section we find minimal elements of HSy, with respect to the linear
order induced by x. We will strongly rely on a result of Harary and Harborth
([11]): for every S € HSy

2h+1+u<n(S)<4h+2 2)
where & = {/T2h — 3} and {z} denotes the smallest integer greater or equal

to r. Moreover, this bound is reached in spiral hexagonal systems, which
we will denote by T, (see Figure 2).

Figure 2: Spiral hexagonal system

Let b(S) denote the number of bay regions, 1.e. b(S) = B (8)+2C (5)+
3F (S). Considering the well known relations ([7),[14])

2 (5) = mp3(S)=dh—a-2b(S)-2n (S)
n(S) = 4h+2-ni(S)

where n; (S) denotes the number of internal vertices of S, we easily deduce
that

#(S) =n(S)—2h—4—b(S)
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and so by equation (1)
2 (8 = (%7a)n(.‘3')+o>b(5)+a(2h+4) (3)
where % —a>0.

Note that if Sy € HS) is such that

n(Se)=2h+1+4+u }
b(Sy) =0

then S is a minimal element of HSy. In fact, by (2) and (3), if S € HSs
then

(4)

1 (S) =\ (So) = (—% —a) n(S) = (2h+1+u))+ab(S) >0

In order to simplify relations (4), recall that the size of the perimeter of an
hexagonal system S € HS), denoted by p(S), is the number of external
vertices which is kuown to conform the relation p(S) = 4h 4- 2 — 2, (5).
Since n; (S) = 4h + 2 — n (S) then

p(S) =2 (8) ~ 4h -2

1t follows that n(S) = 2h + 1 + v if and only if p(S) = 2u, which implies
that the set of relations given in (4) is equivalent to the set of relations

P(S0) =2u }
5(Se) =0

We next give a precise description of hexagonal systems S € ‘HS,, such
that 0{S) = 0. For these systems, only hexagons of mode Ly, La, La. Lg, P2
and P; occur {the modes L, or Ly only occur in the linear hexagonal
chain). Consequently, it is not difficult to see that there exists (g,r, 5,1} €
N* x N x N* x N, where N ={0,1,2,...} denotes the natural numbers and
N* = N\ {0} = {1,2,...}, such that § is isomorphic to the hexagonal system
S(g,r,s.t) shown in Figure 3.

(5)

Remark 2.1 Given § € HS), such that b(S) = 0, the 4-tuple (q,r,5.t) €
N* x N x N* x N satisfying S = S(q,r, s,1) is not unique. For instance, the
hexagonal systems S and S' shown in Figure J can be represented as
S
Sl

IR

5(3,1,3,1)25(4,1,2,1) 2 §(2,2,2,2)
§(2,3,1,1) = 5(4,1,1,3)

IR
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Figure 3: Hexagonal system with no bay regions

Theorem 2.2 Let h be a positive integer. The following conditions are
equivalent:

1. There exists So € HS), satisfying relations (5);

2. The system of equations

(6)

rg+i(r—Dr+(s+t)(g+7)—3t{t+1)=h
2g+3r+2s+t—1=u

has a solution (g,7,s,t) € N* x N x N* x N,
If this occurs, then Sy is a minimal element of HS),.

Proof. 1. = 2. Suppose that there exists Sy € HS, satisfying relations
(5). Since b(So) = 0 then Sp = S (q,7,5,t), where (g,7,5,t) € N* x Nx N* x
N. By a combinatoric argument we obtain

ho= h(So)=g+(g+ 1)+ +(gr—1+slg+r)+
(g+r-L++(g+r-1t)

1
= v‘q+5(1'—1)1‘+s(q+r)+t(q+1‘)-%t(£+1)

= rq+%(r—1)r+(s+t)(q+1-)—%t(t+1)
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and

2u = p(S)=(20+1)+4(r - +4(s+1)+4(E -1 +2(g+7r-1)+1
2(2¢+3r+2s+1—1)

Consequently, (g,r,s,t) is 2 solution of the system of equations (6).

2. = 1. If the system of equations (6) has a solution (g,7,5,t) in N* x
N x N* x N, consider the hexagonal system Sy = S(g,7,s,t). Then by the
argument above,

1
h(So) =rq+%(r-‘ 1)r+ (s+t)'(q+1')*‘2‘t(t+1') =h
and so Sp € HSy. Furthermore,
p(So)=2(2g+3r+2s+1~1)=2u

and clearly by construction, b(Sp) = 0. Hence Sy satisfies relations (5).
The last statement was shown above. ®

Remark 2.3 Hezagonal systems verifying relations (5) (if they exist) are
not necessarily unique. For ezample, the hezagonal systems S and § de-
picted in Figure 4 are non-isomorphic hezagonal systems belonging to HS1a
which satisfy relations (5). In perticular, S and §' are minimal elements of
HS1s-

Figure 4: Minimal non-isomorphic hexagonal systems in HS)g

By Theorem 2.2, given a positive integer h, we can construct a mini-
mal element of HS;, from a solution of the system of equations (6). What
happens if there is no solution?
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Corollary 2.4 Let h be a positive integer such that the system of equations
(6) has no solution. Then the spiral T}, is a minimal element of HS),.

Proof. First of all we note that the number of bay regions in a spiral
hexagonal system is 0 or 1. Since p(7T}) = 2u then by Theorem 2.2 and our

hypothesis, b(7,) = 1. On the other hand, if § € HS), then by equation
(3)

x(8) - x(Tw) = (% - o:) n(S)-@h+1+u)+a®(S)-1) (7)
If5(S) =0 then n(S) — (2h + 1 +u) > 1 and so

—-2a>0

W -

X(8) - x(T) = (%—a) —

If &(S) > 1 then by (2) and (7), x (5) — x (%) > 0. Hence, T), is a minimal
element of HS),. =

From our results above, given i € N, the problem of finding a minimal
element of HS,, is completely determined by the existence of solutions in
N* x N x N* x N of the system of equations (6). Note that equation

29+3r+25+t—-1=u (8)

gives a bound for each of the values of ¢,7,s and . More precisely, if
(g,7,5,t) € N* x N x N* x N is a solution of (8), then

1<g<s {8} |, o<rc{xfd
1<s<{xf2 0<t< {ut1}

Therefore we can check among all (finite) possible values of (g, 7, 5, t) ({%i }2-
({¥2} +1)-({u+ 1} + 1) possibilities) which of them is a solution of equa-
tion (8), and then among these, which are solutions of equation

:'q+%(r—1)r+(s+t)(q+r)~%t(t+1)=h

However, this process can be extremely long for large h. We will show in
our next result a more effective algorithm.

Theorem 2.5 Let (g,7,5,t) € N* x N x N* x N be a solution of the system
of equations (6). Then
u—3 1
fom ——— o —
T i
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t—3+4+u
r——ﬁ—ty

and

~3r+4t+1+utz —31‘—3t+1+u:.cz:)

(g:9)= ( 1 ) 3

where (z,y,z) € N x N x N 15 a solution of the equation
2127 + 3y? + 2% = 28 (u? + 3 — 12h) (9)

Proof. Assume that (g, s,t) € N* x N x N* x N is a solution of (6).
Then by simple algebraic manipulations,

Gl (-3r+:+1+ui,/A(r,t) —3:-—3:+1+u¢,/A(1-,p.))

4 4

where
A(r,t) = =Tr2 £ 2tr — 6 + 2ur — Tt% = Gt + 2ut + 1 + 2u + 1 — 16h

Since g,7,s,t,u and h are integers. A(r,t) = z? for some integer . which
we may assume non-negative. Then solving for = in this equation we obtain

= t-3+ux /B()
7
where
B (t) = 482 — 481 + 16ut + 16 + 8u + 8u® — 112k — 72?

As above, B (1) = y? for some non-negative integer u. It follows then

u—3 1
b= iﬁ\/ﬁ

where
C = 84 + 28u? — 336h — 3y% — 21x?

Finally, C = 22 for z € N. Consequently,

1 1 I} 1 |
R ol Sl Sl s

Tt TmeY T TaEt
or equivalently

22?4 3y* + 2% = 28 (u? + 3 — 12h)
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Note that since « = {/12h — 3} then (1 — 1) < 12k -- 3 < u? and so the
right member of (9) is non-negative. m

If (¢,7,s,t) € N* x Nx N* x N is a solution of (6) then Theorem 2.5 gives
tight bounds for t. In fact, let p = /28 (u? +3 — 12h). Since 0 < 2 < p

then
’_u—3+lz=:>u—3<t<u—3+i
=76 13 g BreTg TR
and 3 ] 3
W v O L L ca
6 12 6 12 6

Based on this observation we can give a more effective algorithm as follows:

Algorithm 2.6 Leth € Nandu = {\fiQh - 3}. Setp = /28 (u? + 3 — 12h),
Zy(t) =2(u-3)-12t, Z2(t) = -2, (1)

t—-3+u t—34u
S R =Ty

R’ (ty) = G

and
flx,y.2) =21z + 3y + 22 = p?
1. For each integer to € (%52 — Lp, %3] compute Z; (to).

2. Find the non-negative solutions of
f(r.y,Z (to)) =0

3. For each solution (xq.yo, Z) (tg)) n step 2, compute R;({to,y0) end
Ry (to, yo) -

4. If R;(to,y0) € N (i = 1 or 2), solve the following system of equations
Jor (g,r,5,1) :

rg+5(r=Lr+(s+t)(g+r)-t{t+1)=h
9+ +2s+t-1=u
T = R; (to,30)
t=1{gy
5. Repeal steps 1 through 4 for each tg € [“5%3, "T-?a + %p] substituting
Z, (ta) by Za (to)

6. Choose solutions (g.r.s,1) € N* x N x N* x N given in step 4.
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Then by Theorem 2.5, cvery solution of (6) will be obtained in step 6.

We note that each of the steps in the algorithm can be easily computed
using a math software system. We used MAPLE 7 in our next examples.

Example 2.7 Let h = 350 Th.cn u = {\/12 350 — 3} = 65 and so for

cach integer ty € LEE} - _27" g ] [8 T] we compute Zy (to) and for
each ty € [%3, 52 + upi 1,38) we compute Zy (to). The following
Table contains the information gwen by the algorithm.

Step 1 Step 2 Step 3 Step 4

Ry (to,
o Zi) (i) o) (a,7,5.0)
: X 10 (11,10,3,8)
8 28 (0,0,28) 10 (11,10,3,8)
g 16 (1,3,16) 5éi7 ’
79/7 *
(4,8,16) 9 (13.9,2,9),(11,9,4,9)
(5,1,16) Y -
747 *
10 4 (6,2,4) 10 {10,10,3,10)
(5,9, e :
88/7 *
(0.16,4) 3 (13,8,3,10)
12 9,12,1, 10)
(411‘2:4) 60/7 ( * )
R, (to,
to Za2(to) (0,v0, Z2 (to)) R;Etg»zz% (@r5t)
18 * 2 *
12 20 (1,11,20) Bi{' -
12 &
(2,10, 20) 64/7 %
78/7 *
(4,4,20) 10 (11,10,1,12)

The solutions for the system of equations (6) when h = 350 and w = 65
are gwen in the last column of the Table. In particular, for cach of these
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solutions (q,7,s,1), the hezagonal system S = S(g,7,s,1) is minimal in
HS3s0.

Example 2.8 Let h = 2712805. In this case, u = 5706 and so we compute
Z1 (tg) for to € [921,950] and Z; (to) for to € [951,980]. For each of these
values of tg, it can be checked that the equations

Ty, 21 (10)) = 0 and [ (z,y,Z2(t0)) =0

have no solutions. Therefore, the system of equations (6) has no solution.
It follows from Corollary 2.4, that the spiral Ty719805 15 a minimal element
of HS2712805-

3 Hexagonal systems with maximal connectivity
index
The hexagonal systems £, depicted in Figure 5 have maximal connectivity

index in the class CHS), of catacondensed hexagonal systems ([15, Corollary
7}). We will show in this section that they are also maximal in HSy.

% o
L c

E; E, Ey, (heven h>a) E (hodd, h>3)

Figure 5: Maximal hexagonal systems in HS;,

For each i € N ([15, Examples 4 and 5)), n (E,) = 4h + 2 and

=6 if b is even

o= { 88=T if  is odd
2
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Given § € HS), since n(§) = 4h + 2 — n; (8S) it follows from equation (3)

) oy [ A= a)ni(S) + a (58 —b(8)) if his even

x (En) - x(S) = { (- a)ni (S) +a (B2 —5(85)) if his odd
Bearing in mind the relation b (S) = mgs (S) -6, to show that x (5) < x (Ey)
is equivalent to show that

3tz

maa(8) < (55 1) m()+ 25 (10)

6 if k is even

RESEE= { 5ifhisodd -

Theorem 3.1 Let § € HS,,. Then inequality (10) holds. In particular, Ey
hes mazimal connectivity index in HSy.

Proof. We use induction on n; (S). If n;(S) = 0 then S is a cata-
condensed hexagonal system and the result follows from ([15, Theorem 6}).
Assume as inductive hypothesis, that (1G) holds when n;(5) < k. k& > 0.
Let Sp € HSp such that n; (Sp) = k+ 1. We can choose an internal vertex v
of Sp such that not all of its adjacent vertices are internal. We consider the
following cases: (a) v is a vertex of Sy with three adjacent external vertices
a.b and c (see Figure 6).

\\\ td

PV
:\ b

b

70

So S Sy

Figure 6: The hexagenal system Sp splitted into sub-hexagonal systems 53
and S

Then we can split Sy into sub-hexagonal systems S; and Sz such that

h = hy+hy
n {(Sp) = 1, (5) +n:(S2)+1
mao (Sp) < moa (Sh) — mog (So)
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where hy and h; denote the number of hexagons of S; and S, respectively.
Moreover, if it is even then hy and Iy have the same parity. Therefore if hy
and hy are even, then by our inductive hypothesis

m(So) < mag(8))+ma2(S2)

(% . 1) (n: (S1) + 1 (S2)) +

J
(%_1)(% 3l1-(5
1 3h+(z
(5; = l)n (So) +

Similarly, if h; and ks are odd. On the other hand, if h is odd then h; and
iy have opposite parity. Consequently, if 1y is even and ly s odd then

3(h+ha)+6
2

in

]

may (So) < maa(8)+maz(Sa)
(ln . ‘) s m e e Tl g e ba

2
(35 -1) s -0+ 545

2
1 3h+5
< (55 -1)metsa+

IA

I

If hy is odd and hs is even is similar.
(b) v is a vertex of Sp with two adjacent external vertices a and ¢ (see

Figure 7).
i \\\

So Sy S»

Figure 7: The hexagonal system Sp splitted into sub-hexagonal systems S
and S»

Then we split Sp into sub-hexagonal systemns Sy and S and an analogous
argument as in case (a) shews that inequality (10) holds for mas (Sp) .
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(c) Assume that Sp does not have internal vertices of the types considered
in cases (a) or (b). Then there exists an internal vertex v of Sp with adjacent
external vertex a as shown in Figure 8

Sue el Sy
gl gl

z (g
So S, Sy

Figure 8: The hexagonal system Sp splitted into sub-hexagonal systems 5
and Sy

In this case.
h = 2+hy
n; (Su) = 1+n; (52)
maa(So) < 6+ mp(Ss)

If h is even then hj is even and so

maga (So) < 6+ magy(Sa)

< 6+ (% —1) ne(S2) + P2ES
= B (51& —1) (ni(so)_1)+w
= (% - 1) (i ($0) — 1) + L322
< (i - 1) e (50) + LE8
Similarly if h is odd. This ends the proof. =
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