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Abstract

A chemical (n, m)-graph is a connected graph of order n, size m and maximum
degree at most 4. The general Randié¢ index of a graph is defined as the sum of the
weights [d(u)d(v)]* of all edges uv of the graph, where a is any real number and
d(u) is the degree of a vertex u. In this paper, we give the lower and upper bounds
for general Randié index of chemical (n, m)-graphs.

A graph of order n and size m is called an (n,m)-graph. A connected graph is called
chemical if its maximum degree is at most 4.
The Randi¢ index of a graph G is defined in [6] as

1
X(G)=HZUW= 1
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where uv runs over all edges of G, and d(u) is the degree of a vertex u.
The general Randié index is defined in [1, 2] as follows

x(@) = 3 o), ®
weB(G)

where «a is a real number. The authors of (3, 4] studied the lower and upper bounds for
Randi¢ index (i.e. a = —1/2) of chemical (n, m)-graphs, while the authors of (3] gave the
bounds for chemnical trees with a = —1. The focus of this paper is on the lower and upper
bounds for general Randi¢ index (i.e. any real number a) of chemical (n, m)-graphs.

Suppose that G is a chemical (n,m)-graph. Let x;; denote the number of edges each
having end-vertices of degrees i and j respectively, for 1 < ¢ < j < 4. Note that G is
connected, z;, is thus zero for n > 2. Therefore, (2) can be presented as

Z (i)

1gigisd
%512 + 3%21, + 49(T14 + Ton) + 6°T23 + 8%Tn

+9%233 -+ 12%T34 + 16%T44 .

Il

Xa(G)

If we count the number of vertices and the number of edges in two different ways,

respectively, we would then have the following identities,

11
Z (; I _-)-'cu =n (3)
16554 J
Z Ty =m (4)
1<ig584

First., we choose two different variables z., and z. among the z;;'s except z;;, and

then solve them from the above linear equations,

11 11 1 1
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where vy = 1/(1 +} — 1 — 1). Therefore, the general Randi¢ index x(G) can be rewritten

in form of z;;’s except Zop and Zog,

XalG) = D (4)°%i; + (ab)°Tas + (cd) Zeq
abtijed
= Z (i7)%xi; +v(ab) [n~ - —)m+ Z { +-—£.—l.)ze,-!
ab#ijFed ub#u#od E J
il il s 1.1 L L
~ed)[n = (2 + pm m‘é\%ﬁ( 7= el
= n{(ah)” - (cd)?] +wml cd)“(z.lg *® %) = (ab)"(% & é)l
1.1 1 1% ,
+ 3 o T - COMEC R e R
= ynl(ab) — (e + (et + ) - (ab>°<§1 +3) 1
1 1 1 1
+y K%jﬁ[ @+ C+y—1- S G~ 2 Ded) Yz,
Let
B(ab, cd) = n[(ab)* — (cd)?] +_'n?£ zdi Ei ;) — (ab)>(2 + 1)) @
a b c d
and
Rylabod) = 2()+ G+ g - ;- P+ GHr -2 - P @
Then x.(G) can be expressed as follows,
Xa(G) = Blabod) +v 3 Ry(ab,cd)zy;. (9)
1515584

Our next aim is to determine whether there are some ab’s and cd’s such that Ry;(ab, cd)
are all non-negative or non-positive. Without loss of generality, we assume that v > 0.
If the answer is yes, for example, there is (ab,ed) such that Ri;(ab, cd) are non-positive.
Then B(ab, cd) is an upper bound of the Randi¢ index x(G).

The forms of Ri;{ab, cd) lead us to study the functions
() = (kD)*

S(ij kl) = T O=q+D

(10)
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For convenience, let S(ij,1j) = 0. Note that if & > 0, then S(ij, k) < 0, and if a <0,
then S(zj,kl) > 0.

We construct a symmetric matrix of elements S(ij, kl) defined in (10) and denote
by S. Since S is symmetric, we only consider the upper triangular part of S here. An
interesting lemma to determine all (ab, cd)’s and (ab, cd)’s which guarantee all Ri;{ab, cd)
non-negative and jo(ab, ed) non-positive, respectively, yields as follows.

Lemma 1. There exist (ab,cd) s and (ab, cd) 's such that S(ab, cd) is simultaneously min-
imal in its row and mazimal in its column in the upper triangular part of S, and S(gb, cd)

15 simultaneously mazimal in its row and minimal in its column, i.e.

S(ab,cd) < S(ab, ki), for 1/a+1/b> 1/k+ 1/, (11)

S(ab,cd) > S(ij,cd), for 1/i+1/5 > 1/e+1/d; (12)
and

S(ab,cd) > S(ab, ki), for 1/a+1/b> 1/k+1/1, (13)

S(ab, ed) < S(ij,cd), for 1/i+1/5 > 1/c+1/d. (14)

The proof of Lemma 1 will be based on Lemma 3. Let us first verify that (ab, cd)
and (ab, cd) satisfy that all Ri;(ab, cd) non-negative and Ri;(ab, cd) non-positive. Indeed,
Ri;(ab, cd) can be expressed in the following two forms:

Rylab,cd) = -}r(}l +% - % " %)(S(ab ij) — S(ab, cd)) (15)
s }1(% + 31 - % " é)(S(ij, ed) — Slab, cd) (16)

If1/a+1/b> 1/i+1/4, by (11), (15), Ri;(ab, cd) < 0; Otherwise 1/@ + 1/b < 1/i + /3.
Note that 1/6+1/d < 1/@+ 1/b. Thus, 1/i41/j > 1/2+ 1/d, and by (12), (16), we have
Ri;(ab,ed) < 0, too. The argument in similar manner leads that Rij(ab,cd) 2 0.

Theorem 2. The general Randic indez x{G) has the following bounds:
B(ab, cd) < x(G) < B(ab,cd) (17

for chemical (n,m)-graphs, where B(ab,cd) is defined in (7), (ab,cd) and (ab,cd) are
defined tn Lemma 1 .



If @ = —1, then the matrix S is
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(ab, cd):
0.00
1.00
1.00
0.50
0.50
0.50
0.47
0.45
0.44

Thus, (ab, cd) = (12,44), and we may choose (b, cd) ='(14,44). Then, the upper bound
is B(12,44) = (14n — 5m)/32 and the lower bound is B(34, 44) = (4n — m)/16, where the
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lower bound for chemical trees coincides with the result of [5].

As we observed in the examples, there are possibly more than one value for both
(ab,cd) and (ab,cd), however, one of (ab,ed)’s would fall in the first row and one of
(ab, cd)’s would fall in the last column. Based on this fact, we have a constructive proof

for Lemma 1. To avoid the mess of notations, we are going to prove a statement which

simplifies Lemma 1. We also preseni it as a lemma.
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[llustrative examples are given to show the idea of choice of (ab, cd) and (E,a). As

reported in [3, 4], a bound of the Randi¢ index is as follows

4n]+2msx(c)s (2\/5—2)n—2(3—2\/§)m_ a8)

In this case, & = —1/2, and {12, 13, 14,22, 23,24, 33,34, 44} are listed in the order
based on the values (1/7 + 1/5)'s. The matrix S is obtained as follows.

0.00 0.78 0.83 0.41 045 0.47 045 0.46 046
0.78 0.00 093 023 0.34 0.38 037 038 0.39
0.83 093 0.00 0.00 0.22 0.29 029 0.32 033
041 023 0.00 000 0.55 0.59 0.50 0.51 0.50
045 034 022 055 0.00 0.66 045 048 047
047 038 029 0.59 0.66 0.00 0.24 0.39 041
0.45 037 0.29 050 0.45 0.24 000 0.54 0.50
046 038 032 051 0.48 0.39 0.54 0.00 0.46
0.46 039 033 050 0.47 0.41 0.50 046 0.00

! 078 000 093 023 0.34 038 037 038 0.39
0.83 093 0.60 0.00 0.22 0.29 0.29 0.32 0.33
041 0.23 0.00 0.00 0.55 0.59 0.50 0.51 0.50
045 034 022 055 0.00 0.66 045 0.48 047 |[;
0.47 038 0.29 0.59 0.66 0.00 0.24 0.39 0.41
0.45 037 029 0.50 045 0.24 0.00 054 0.50
0.46 0.33 032 0.51 0.48 0.39 0.54 0.00 0.46
0.46 0.39 0.33 0.50 0.47 041 0.50 0.46 0.00

(0.00 0.78 0.83 0.41 045 0.47 0.45 046 0.46

0.00 0.78 0.83 0.41 0.45 047 0.45 0.46 0.46

0.78 0.00 0.93 023 034 038 037 0.38 0.39

0.83 0.93 0.00 0.00 022 0.29 0.29 032 0.33
041 023 0.00 0.00 055 0.59 0.50 0.51 0.50
045 0.34 0.22 055 0.00 0.66 0.45 0.48 0.47

0.47 038 0.29 0.59 0.66 0.00 0.24 0.39 041

0.45 0.37 0.29 0.50 0.45 0.24 0.00 0.54 0.50

0.46 0.38 0.32 0.51 0.48 0.39 054 0.00 0.46

046 0.39 0.33 0.50 0.47 0.41 0.50 0.46 0.00
Thus, let (ab, cd) = (12,22). Similarly, let (ab, cd) = (14,44). Therefore, we obtain that
the upper bound of x(G), B(12,22) = [(2v/2 — 2)n + (3 — 2¢/2)m]/2 and the lower bound
B(14,44) = (dn +m)/12.
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Lemma 3. Given an ordered sequence of numbers a; > -+ > a, > 0 and a sequence of

numbers by, -+ ,b,. A symmetric n X n malriz E is defined with entries
bimbi  pi oy
€j = 7Y 1'”. # e
0 fi=7.
Then

1. ey, = min;y e); is simultaneously minimal in its row and mazimal in its column

in the upper trianguler part of E; and

2. €ign = MiNix, € 15 simultaneously mazimal in its row and minimal in its column

in the upper trianguler part of E.
Proof. We only need to prove the first part. Indeed, we need to check that
€150 2 € for @ < J,
which is equivalent to
ey > ey, for 1< j.

Since ey, is minimal in its row, the above inequality holds. O

Indeed, let @y, - ,ag in Lemma 3 be the order of the numbers (1/i+1/;)’s. We can find
at least one (ab, cd) and one (ab, cd) which are defined in Lemma 1 for each real number .
Applying Lemma 3 and Theorem 2, the bounds for the general Randié¢ index of chemical
(n,m)-graphs yield. We summarize them as the following theorem. Let aj,ai, a3 be
the non-zero roots of equations S(12,22) = S(12,44), S(12,14) = S(12,44), 5(14,44) =
5(34, 44), respectively. We can use Maple to calculate the numerical values of them easily:
ap = —.6942419136, ap = 3815886463, a3 = —1.0. See Figures 1, 2 and 3.

Theorem 4. The general Randi¢ index x(G) of chemical (n, m)-graphs has the following
lower and upper bounds

l. —o<afg&om<a<om
o)
x(G) < (2% — 16%)n + (516" — 2% Vym; (19)
2 ap<asg0

X(G) < (2% = 2. 4%)n + (3- 4% = 2°)m; (20)
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Figure 1: critical point a;
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Figure 2: critical point a;
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Figure 3: critical point ag
30<alm

x(G) € (2272 — 4t )n + (6- 4% — 5 2°)m; (21)

4 ~w<a<a&l<a<oo

x(G) > (12¢% — 12-16°)n + (7 - 16* — 6 - 12%)m; (22)

5 aa<a<0

(4°+) — 4. 16°)n + (5- 16 — 2-4%)m

x(G) = =

@)

Proof. We can verify that $(12,22), 5(12, 14), §(12, 44) are smallest among 5(12, kl)'s
in each corresponding interval of & oy < @ <0, —0 < @ < o & & < a < 0o,
0 < o <€ @y; and 5(14, 44), S(34, 44) are smallest among S(i7,44)'s in each corresponding
interval of a: a3 < @ <0, —00 < @ < a3 & 0 < & < c0. By Lemma 3 and Theorem 2,
we have the above results. 0
It is not difficult for us to give examples to show that some of the above bounds are

best possible for some values of a. In most cases, we do not know yet whether or not the
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above bounds are best possible. However, one can improve them by discussing them case
by case similar to the idea in [3, 4.

To end this paper, we point out that we can employ the same method to give a lower
and an upper bound for the general Randié¢ index of general {n, m)-graphs with maximum

degree at most k. For example, for a = —1 the bounds are as follows
n_m nth = )+l = )
E—ESXMI(G)S Tz .
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