no. 52, September 2004
maTen MATCDY (52) 119-128 (2004)

Communications in Mathematical

and in Computer Chemistry ISSN 0340 - 6253

Trees with minimum general Randi¢ index *

Yumei Hu, Xueliang Li, Yuan Yuan
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, P.R. China

Email: ym hu@eyou.com; Ixl@nankai.edu.cn; yy.yunan@eyou.com

(Received December 15, 2003)

Abstract

The general Randi¢ index of a (molecular) graph G is defined as the sum of
(d(u)d(v))* over all edges uv of G, where d(u) denotes the degree of a vertex u
in G and «a is an arbitrary real number. In this paper we show that among trees
with n vertices, the path P, for @ > 0 and the star S, for @ < 0, respectively,

has the minimum general Randié index.
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1 Introduction

For a (molecular) graph G = (V, E). the general Randié¢ inder R,(G) of G is defined

as the sum of (dg(w)dg(v))® over all edges uv of G, where dg(u) denotes the degree of

*Supported by National Science Foundation of China.



120

u € 1" and a is a real number, i.c.,
RiG)= Y (do(u)dg(v)).
weE(G)
[t is known that the index R_% was introduced by Randié [8] in 1975 as one of the many
graph-theoretical parameters derived from the graph underlying some molecule. Later,
Bollobds and Erdds (1} generalized this index by replacing —3 by any real number
a, which was called the general Randi¢ index. Recently, R, received considerable

attention in the literature, see (2, 4, 3, 6, 10].

Yu [10] gave a sharp upper bound of R__% for trees of order =, i.e., R_%(T) <
%(n+2\/§—3). Bollobés and Erdés (1] gave a sharp upper bound of R, with a € (0,1,
for graphs of size m, and a sharp lower bound for R, with a € [—1,0), also for graphs
of size 7n. Clark and Moon (5] gr.ve severa! extremal and probabilistic results of Rq for
certain families of trees. Li and Yang [7] studied the general Randi¢ index for general
graphs, and they obtained lower and upper bounds for the general Randié¢ index among

graphs with n vertices, and the correspending extremnal graphs.

Since trees are important molecular structures in chemistry, in the following we
only deal with trees, ie., connected graphs without cycles. We give the trees which
have the minimum general Randi¢ index, as well as the corresponding values of the

index. A clear picture is given depending on the real number « in different intervals.

The set of vertices (edges) of a simple graph G is denoted by V(G)(E(G)). The
order of G is defined by |V (G)| and the size of G is defined by |E(G)|. The degree d(u) of
a vertex u is the number of vertices adjacent tou in G. A vertex of degree one in a tree
is called a leaf of that tree. The vertices adjacent to vertex u are called the neighbors
of u. and the neighborhood of u is denoted by N(u). The path of order n is denoted
by P, and the star of order n is denoted by S,,. For uwv € E(G), w(uw) = (d(u)d(v))*

is called the weight of uv. Undefined notations and terminology can be found in {3].

For a = 0, the general Randi¢ index of any graph G is exactly equal to the size of

G, namely Ry(G) = |E(G)|. So, for any tree T of order n, we have Ro(T) = n — 1.
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Therefore, in the following we always assume a # 0. We distinguish « in two intervals.

2 The case for a >0

Since there are two different non-isomorphic trees with 4 vertices, it is easy to
calculate that for u is proximately equal to 3.0816, if a > g, S4 has the minimum

value, otherwise Py has the minimum value. We assume n > 5 in the following.

Theorem 2.1 Among trees with n (n > 5) vertices, the path P, has the minimum

general Randic indez for a > 0.

Proof. Suppose that T is a tree, but not a path, which has the minimum value of
the general Randi¢ index for @ > 0. We will derive contradictions. Suppose that
P = wvy. ..U 1Uk is a longest path of T. Then d(v;) = d(vx) = 1. Considering the
degrees of v, and wvi_,, we distinguish the following two cases.

Case 1. d(vz) > 2 or d(ve—y) > 2.

Without loss of generality, we assume that d{ve-,) = d > 2. Since P is a longest
path of T', all the vertices adjacent to vi_;, other than vi_,, must be leaves. Let
Uy, Uz, -+, Ug-p be the neighbors of vg_y, other than vi_o and v,. By deleting the
edges vg_ Uy, Vk_1 U2, -+ , Vo1 Uq— and adding the edges viuy, veuy, -+ - , Vrug-2, We get

anew tree T, as shown in Figure 2.1.

U Uz Ug.2 U U Ugep
—_
vy vzu Vg-2 Uk-1 Uk Uy U'z. N Vg-2 Vk-1 Uk
T T

Figure 2.1
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Wd(vi) =1 T is astar S, Forn >3, we have
Ra(Sa) = RalPa) = (n =121 =20 = (n = 3)4°
= (n=3)((n-1)*=d%) +2((n-1)* =2 > 0.
Now we can assume that d(ve_,) > 2. So we have
Ro(T) = Ro(T")

= dvg_a)(d® = 2%) +d° - 2°(d - 1)° + (d— 2)d® — (d - 2)(d — 1)°

v

29(d® — 2%) + (d — 1)d® — 2°(d = 1)* — (d — 2)(d — 1)°
> 2%(d* = 2%) + (d - 1)d® — 2°(d — 1)% — (d — 2)d°

29(d — (d = 1)°) +d® — 4°.

1l

Hence, if d > 4, we have Ro(T) — Ro(T") > 0, otherwise, d = 3 and then
Ra(T) — RA(T") > 2%(3* -2} +3% ~4°
= 6%°+3*-2.-4°
2/18% - 2V/16% > 0.

v

Case 2. d(v2) = d(ve—1) = 2.

Since the tree T is not a path, there exists a vertex v; such that d{v;) = d > 3 for
somei =3,4,---  k—2. Let uj,us,- -+ , ug-2 be the neighbors of v;, other than v;., and
t,41. By deleting edges v v, ugu;, - - - , ug_2v; and adding edges wjvg, usvk, - - - , Uy,

we get a new tree T' as shown in Figure 2.2

Denote by S,, the sum of the weights of the edges adjacent to v;, other than v;_v;

and vv;,,. Then we have

w(vi-1v;) + wlvvi) 2 2-2%%4* and Sy, > (d - 2)d”.
So,

Ro(T) = Ra(T")

(i) ()1 = 22+ 201 = (= 1%+ Sl = (5)°)

n

5 e _om) L0l — (- T + [~ o — [ - 1.
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U Uy Ug-2 Uy Uy Ug-2
=
— .. A - —— “ae
i L Uigl Vk—1 Uk v Vi1 Uy Vigl Vk-1 Uk
T T
Figure 2.2
[fd > 4, then

Ro(T) = Ra(T') > 2°%'(d* - 2%) +2%(1 - (d = 1)%)
= 2°(d® —(d-1)°+d®-2-2°+1)

> 2%(4°-2-2°+1)=27(2* - 1)? > 0.
Otherwise, d = 3 and then

RolT) = Ra(T)) = 2°%1(3° — %) + 2°(1 - 2°) + (3° = 2%)
= (6°+3°—2-4°) + (6° — 4°)
> 6%+3°-2-4°

> 2V18>-2V16% > 0.

Therefore, in both cases we get a tree T' with smaller value of the index, which con-

tradicts to the choice of T', and the proof is complete. | |

3 The casestor a <0

At first we show a lemma which will be used for the proof of the theorem in this

section.

Lemma 1 For 0 <m < 1, if d,p > 1, then g(d,p) = (d +p — 1)} — (d — 1)d™ -
(p—1p™ —d™p™ > 0.
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Proaf. Siuce

d
3—3 =(m+){d+p=-1" = (m+1)d™ +md™ ! ~ md™ 'p™,
we have
8
05 _ _qymet 2 melom—l
P (m+ Um(d+p-1) m*d"p

> mi((d+p-1)"" = (dp)™7h).

a
Since d,p > 1. d + p — 1 < dp, we have ‘%B;’L > 0. Furthermore, gﬁ(d, 1) = (m+

1d™ = (m 4+ L)d™ + md™ = md™' = 0. S6 we get & > 0, for p > 1. Since
g(l,p)=p™ 1t ~ (p-1)p™ —p™ =0, we have g(d.p) >0 for d,p > 1. 1

Theorem 3.1 4mong trees with n vertices, the star S, has the minimum general

Rendié indez, for a < 0.

Proof. We distinguish the following two cases.

Cusel. -1 <a<0.

Assume that a tree T is not a star, but which has the minimum index, for =1 <
o < 0. Let u be the vertex of T with the maximum degree, and so d(u) < n — L.
Choose a vertex v with largest degree among all the neighbors of v. Suppose d(u) = d
and d{v) = p. Then we have d > p > 2. By contracting the edge uv and adding a new

leaf edge uw on the new vertex w, we get a new tree 7' (see Figure 3.1). Denote by 5,

7.

_M< =

T i

Figure 3.1

the sum of the weights of the edges, other than uv. incident with the vertex u, and 5,
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the sum of the weights of the edges. other than uv, incident with the vertex v. Thus
we have

Se > (d-1)d** and S, > (p—1)d°p°.
So.

Ro(T) - Ro(T")
(d+p-1)°
da
2 (d-1)p%(d* ~ (d+p-1)") +(p - 1)d"(" — (d+p— 1)) + (dp)*

—(d+p-1)°

_ld+p-

= S(1- L D% ¢ (dp)* - (d+p-1)°

Y+ S5(1

= pPd(d4p-1) - (@ p- 0= 1D+ - D +1)
= Pd(dHp -1+ p- 1) = (- 1d0 = (p- Dpm - dp)

> 0.

In fact, from Lemma. 1, we can easily see that the last inequality holds. Therefore, the

new tree 7' has a smaller value of index than T, a contradiction.

Cese 2. a< —1.

Assume that a tree T is not a star for which Ro(T) is minimum for o < —1. Let
P = vguy -+ - ve— vk be a longest path of T, such that the degree of v, is as large
as possible. Note that all the vertices adjacent with v,_, except vi_, are leaves. By
deleting all the leaf edges incident with vx_, and connecting each of these leaf vertices

to the vertex vix., by new edges, we get a new tree 7", as shown in Figure 3.2. Now

'
4 Figure 3.2 T

we will show that the value of general Randié¢ index of 7" is smaller than that of T,
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and thus lead to a contradiction. Suppose d(vg..)) = p 2 2, d(vi=2) = d > 2 and

d(vg-3) = t. We denote by Sy the sum of the weights of all the edges incident with

Uy 2. except vg_pUp—y.
Let u be the neighbor of vy_s, other than vx_, and vx_s. Then d(ww) < p. Since
Sy > (d = 2)d®p® + d®t®, we have
Ra(T) - Ro(T")
= s - I e 4 - 1)t - pld 4 p = 1)
2 ((d=2p" +1°)(d" = (d+p - 1)) + (dp)* + (p— 1)p" = p(d + p - 1)°
> (d=-29p°(d* - (d+p—1)%)+(dp)* + (p— Vp° — pld+p - 1)°
= (d-1)p*d* - (d-2)p*(d+p-1)* —pld +p—1)* + (p— 1)p°
= p"d*p+d-1)((d-1)(p+d—1)"" = (d - 2)d™®
=0 ptd+ (p-1)d(p+d-1)7").
In order to show R.(T) > Ra(T"), it is sufficient to show that
Jldp) = (d=1)p+d=1)" = (d=2)d" = p-p °d™ + (p- Dd *(p+d—1)" >0
Let 3 = ~a > 1. Since
@-1)(p+d—1)f —(d=2)f = ([@-1)((p+d - 1) - ) +&* > &,

we have

fldp) > & -pfd + (p-1)dP(p+d - 1)f
= Pa-PM+p-Dp+d-1))
> dP(p-Dp+1)° -9 +1)
= Fp- D@+ -) - " -1)
= d((p-1)8e"" - pr* ' (p- 1))
= dBp- 1) - 7"

wherep< £ <p+1,1 < <pand B > 1. Sowehave 7" —~ %! >0 thatis

Ra(T) — Ro(T') > 0. This completes the proof. 1
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4 Conclusion

In this paper we obtain the trees with the minimum value of the general Randi¢
index. It turns out that for a in different intervals this extremal tree is unique, and only

two intervals are distinguished. In order to give a clear picture, we use the following

table to summarize our main results.

a a<0 a>0

extremal tree star path (n > 5)

| minimum value | (n - 1)art | 22! + (n — 3)4% (n = 5)

In another successive paper we shall discuss trees with maximum value of general

Randi¢ index. The discussion becomes much more complicated.
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