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Abstract

The graph invariant M, , known under the name second Zagreb inder, cqual 1o
the sum of the products of the degrees of pairs of adjacent vertices of the respective
(molecular) graph, was first considered in 1972. Since then, almost no result for M,
was communicated in cither the chemical or in mathematical literature. In this paper
we state and prove a number of results for My — identiiics and inequalities. including
relations between the Mj-index of a graph and its complement.
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INTRODUCTION

Long time ago [1], within the study of the dependence of total m-electron energy
on molecular structure, some expressions were deduced, containing terms of the form.

My= 3 (&) ; M= ) di-d;

vertices edges

with d; standing for the degree (number of first neighbors) of the vertex v; of the
molecular graph. These terms are, in fact, measures of branching of the molecular
carbon-atom skeleton 2] and can thus be viewed as molecular structure-descriptors
(3, 4]. In the chemical literature, M, and M, are called the first Zagreb-Group indez
and the second Zagreb-Group indez, respectively, or — shorter — the first Zagreb
indez and second Zagreb indez (3, 4]. For more details on this matter see the recent
review [5].

Independently of its chemical context, the sum of squares of vertex degrees of a
graph (which, of course, is just the first Zagreb index) was studied by quite a few
mathematicians; for details and references see [6]. As a consequence, numerous results
on M, are nowadays known [6, 7, §].

The second Zagreb index attracted so far almost no attention of mathematicians
and/or mathematical chemists and — to our best knowledge — not a single general
property of M; was reported in the literature. This motivated us to try to establish
a few such properties, which resulted in the present paper.

Let G = (V.E) be a graph with n vertices and m edges and vertex set V =
{vi,v2,...,v}. We label the verlices of G so that dy > dy > ... > dy, where d;
is the degree of the vertex v, for i = 1,2,...,n. The average of the degrees of the
vertices adjacent to v; is denoted by ;.

In this notation,

M, = M\(G) = an(d.)’ i My=My(G)= Y did;.
i=1 viv,€E
The complement of the graph G is denoted by G = (V, E), where v,v; € E if and

only ifv;v; ¢ E. Fori=1,2,...,n, by d; is denoted the degree of the vertex v; in
G,Ci,'zn*l—d,’.
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The complete graph on n verlices is denoted by K, . Thus, K, is the n-verlex
graph without edges. The graph consisting of disconnected components Gy and Gy
is denoted by Gy UG5. A tree is a connected graph without cycles. An n-vertex tree
possesses n — 1 edges. The n-vertex tree for which d, = n — 1 is called the star and is
denoted by S, . The n-vertex tree for which dy = 2 is called the path and is denoted
by,

We first state a few immediate results:

dipi; = sum of the degrees of the vertices adjacent to vertex v;
= 30 ()
viv;€E
< 2m—d;—(n—1-d;)da (2)

i = Y (3)
=1 =1

n 2 n
4m? (Ed;) =Y di+2 Y did;+2 5 did;
=1 i=1

vivEE vy, €
1 n
z d;d,:‘Zm’———Ed?— Z: d{d}‘A (4)

Hi v EE 2 i=1 viv;€E

It is easy to check that Ma(K,) = in(n —1)% and My(K,) = 0.

By deleting edges from a graph, the second Zagreb index decreases. Thus, the
graphs with maximum and minimum M, are those with the greatest and smallest
number of edges, respectively. This yields:

Theorem 1. If G is an n-vertez graph, different from K, and K, ., then

My(R,) < My(G) < My(K.,)

0 < My(G) <%n(n—l)3.

Lemma 2. The connected n-verier graph with minimum second Zagreb index is an
n-verter lree.

Later (in Theorem 11] we demonstrate that the tree with minimum value of M,

is the path.
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Lemma 3. The following identities are obeyed:

2 did; = *Zdzm (5)

vy €L i=1
S (dit+d) = 2m(n—1)=-3d (6)
viv;§E =1

Z J;sz%—ihn(n—lf{»im +(n~—) Zuﬂ Z d; d;

v, €L =1 wy,€E

Proof. Bearing in mind Eq. (1), we have
Sd=Yd| > d,)_: 2 Y did;
i=1 i=1 vi v, €EE viv;€EE
which is tantamount to Eq. (5).
In order to deduce Eq. (6) we have

2 Y, d+d)_L[(”l-‘1—d)d+2m di i — dy)]
v v EE

E (d.'+dj)=2m(n—l)—zﬂ:d?

v U,!E =1
where Eq. (3) has been employed.
[Eq. (7) is obtained as follows:

Z J,'Jj = Z (11—1—d.)(n—1—dj)

v v €E v EE
= Z(nkl Y -(n-1) Z(d‘+di)+ }: d;d;
viv, g E vy, gE viy,gE
—1)3 3 n -
e (A D B W T

=1 vin€E

where Eqs. (G) and (4) have been used. O
Note that Eq. (7) can be written also in the form

_ )3
Ma(G) + My(G) = (n - g) M(G) + M ~3m(n— 1) +2m? .

Lemma 4. (9] Let G be a graph with n vertices and m edges. Then

LA, 2
S (22 1), ¢
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Lemma 5. [7] Lel G be « graph with n vertices and m edges, m > 0. Then the

cquality

iz 2
Z(ff:m( ml+n—‘2>
holds if and only if G is isomorphic lo S, or Ky or K\ U K.

Theorem 6. Let G be a graph with n vertices and m edges. Then the second Zagreb
indez of G is bounded from above as

MﬂG)S2mL%nTUnMn+%Mn—Um(5¥%+n—2) (9)

with equality if and only if G is isomorphic to S, or K, .

Proof.
o T
viv,€E 2 i=1
S % d“ [Zm-—a’,-—(nwl-d.-)dn] (10)
i=1
:2#ﬁ@-nm¢+a¢—UZ£

=1
1 2
2m2—(nfl}md“+§(dﬂ—l)m( 2

n-—1

IA

+n—2) . an

Relations (10) and (11) were obtained by taking into account Egs. (2) and (8),
respectively.

Suppose now that equality in (9) holds. Then all inequalities in the above relations
become equalities. From (10) we conclude that for every vertex v; either d; = n — 1
or all the vertices v, not adjacent to v; are of degree d,. Then from Eq. (11) and
Lemma 5 follows that G is a star or a complete graph.

Conversely, let G be a star or a complete graph. Then it is casily verified that
equality holds in (9).

By this the proof of Theorem 6 is completed. O

For the star on n vertices, d = n—1,d;, =1, ¢ = 23,.. ,n. Thereforc
My(Sn) = (n—1)2.
The incquality (9) holds for all graphs. In the case of irees, d, = land m=n—1.

Then (9) reduces to My < (n—1)?. From these observations we arrive at the following:
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Theorem 7. Let T be a irec with n veriices. If the second Zagreb index of T is

mazimum, then T is the star.
An alternative proof of Theorem 7 is in Theorem 8.

Theorem 8. [f T is an n-vertez tree, different from S, , then My(T") < M3(S..).

Proof. Let 3 d;d; be maximum. We need to prove that T is the star.

Suppose ut;Ja.Et v; is the vertex of the tree T, such that d; yu; + d; is maximum,
where d; p; is the sum of the degrees of the vertices adjacent to vertex v,, that is,
d;pti + di 2 d;j p; + d; for all values of j.

We transform T into another tree T* by choosing one pendant vertex vy , k # 1,
adjacent to vj, j # 1, deleting the edge v v;, and joining the vertices v; and vi by
an edge. Let the new degree sequence be di, d3,...,d;,. Therefore df = d, fort #1,j
whereas d} = d, + 1 a.ndd;:d,-—l.

Two cases are to be distinguished: (i) v;v; & E, and (ii) viv, € E.

Case (i) viv; ¢ E

Y odidi— Y did; = [dipmi+(di+ 1)) =i —1+4d)

viv,EE viy, €E

= dgp;+dg—dj#j—dj+2>0‘
Case (ii) viv; € E:

Y didi— 3 dedy = = dy+ (di+ 1)+ (d 1) = 1) - did

wv.eb v vieE
—ldijpi—1—-ditd;] = dipi+di—djp;—d; +1>0.

Thus, in both cases we have
35 d; d; > Z did; .
vy, €E v v, EE

i. e, by the above described construction we have increased the value of M, . If T*
is the star, we are done. if not, then we continue the construction as follows.

[t is easy to see that df pu + df is maximum in T*, where d = d; + 1. Next we
choose one pendant vertex from 7, etc. Repeating the procedure sufficient number
of times, we arrive at a tree in which the vertex v; is of degree n — 1, i. e., we arrive

il 8
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Lemma 9. Lel I be a forest with n verlices and m edges. If among forests with n

verlices and m edges

(n—%) gdf- Y did;

vy EE

is mazimum, then F is isomorphic {0 Spmyy U Kooy -

Proof. Let v, be the highest-degree vertex, of degree d, . Consider a forest with n
vertices and m edges, which is not isomorphic to Smsi U Kn-m—1 . Then we can take
one pendant vertex vy , k > 1, which is adjacent to vertex v, , v # 1. We delete the
edge v v, and join the vertices v and v, by an edge. Let the new degree sequence
bed;,dy,...,d;. Thend; =d; , 1=2,3,...,n,i¢r di=d+1,d =d. - 1.

Two cases arise: (i) vy v, ¢ F, and (ii) vy v, € E.

Case (i) viv, ¢ E:

(o3 far- £ aa]-[(-D Fa- 5 49

i=1 v v,EE

> (2n-3)(d—d)+> di~3-dym, —dy +d.m, +d,
i=1

= @n-3)d-d)+ Y d;-3+dm +d,. (12)
v v €E , j#1

Two subcases to be distinguished are (a) d, > 2, and (b) d, = 1.

Subcase (a): For d. > 2, we can easily see that the expression in (12) is strictly

greater than zero.

Subcase (b): For d, =1,

d; 22
v v, €6, j#1
and d. m, + d. = 2. Therefore this expression is strictly greater than zero.

Case (i) vyv, € E:

[(mg) g(dr)’— o3 d?di]—li(”‘g)gd?' b d'd’]

viv€E vy, €E

= @2n=-3)(d-d)+ Y di-2+d-m +d . (13)

vi v, €E,#1

In this case, d, > 2, and therefore expression (13) is strictly greater than zero.
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In both cases we have
2 "d'z d; d; - id’—de
"_5 Z(.)—Z i,>“"2 i idj .
= W 97eE =1 wu,€E

Similarly as in Theorem 8, we conclude that F is of the form Spy U Foicsron s

Theorem 10. Let F be a forest with n vertices and m edges. Further, let Ma(F) be
mazimum. Then F is the complement of Sy U W i

Proof. Since Y d;d; is maximum, from Eq. (7) we conclude that
vi vy €

(-DEe- 5,0
i=1 vy, €E

is maximum. Theorem 10 follows now from Lemma 9. O
Theorem 11. If T is an n-vertez tree, different from P, end Sy, then

Mo P) < Mo(T) < My(Sa) .

Proof. The right-hand side inequality in Theorem 11 has already been verified (in
Theorems 7 & 8). In order to prove the left—hand side inequality, we need the following

two auxiliary results:

Lemma 12. Let G be a connected graph, possessing two distinet vertices v, and vj,
such that a verter v, of degree one is attached to v; and a vertez v, of degree one is
attached lo v;. Let d; and d; be the degrees of the vertices v; and v;, respectively,
in the graph G'. Let the graph G* be obtained from G by deleting the edge v, v; and
by inscriing an cdge vy v, If di > d; then My(G*) < My(G). Exceptionally, o
di =d; =2, and if v, is adjecent to a verter of degree 2, then My(G™) = My(G).

Proof. We shall consider the difference M;(G) — M3(G'"). For this we need to
examine only the contributions coming from edges whose degrees differ in G and G~
These are the following:

(1) edges adjacent to v;, different from edge v, v;

(2) edge vy v,

(3) edge v, v; in G and edge vy v, in G~
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(1): In G the degree of v; is d; and the contribution to Mj of type (1) is ;dk d,. In
G* the degree of v; is d; — 1 and the contribution to M, of type (1} is Ex:dk (di = 1).

Recall: 37 is summation over vertices adjacent to v, different from v, .
k

(2): The contribution of edge v, UC, in Gis 1 xd; = d;. The contribution of edge v, v;

inG"is 2 xd; =2d;.

(3): The contribution of edge vz v; in G is 1 x d; = d; . The contribution of edge v, v,

inG*is1 x2=2.

Taking all this into account, we arrive at:

M(G) — Ma(G*) [zdk di 4 di+ d,] - [Edk (di = 1) +2d; +2
k k

de-l-d,'—dj—?.
k

One vertex attached to v; must hiave degree at least two, because the graph G is
assumed to be connected. Therefore the term ) dy is greater than or equal to two.
It is equal to two if exactly one vertex (differentkfrorn v;) is attached to v; and if this
vertex has degree 2, implying d; = 2. In all other cases this term is greater than 2.

If d; > d;, as assumed, then the term d; — d; — 2 is greater than or equal to -2.
It is equal to -2 if d; = d; and is greater than -2 if d; > d;.

We thus see that the difference M3(G) — M2(G ™) is equal to zero if d; = d; = 2
and if the vertex v; is adjacent to exactly one vertex of degree 2. In all other cases

Mo(G) - M>(G") is greater than zero. O

Lemma 13. Let G be a connected graph, possessing a verter v, to which two vertices,
v; and vy, of degree one arc attached. Lei the graph G= be obtained from G by deleting
the edge vy v; and by inserfing an edge vo vy, . Then My(G*) < My(G) . Fzceptionally,
My(G") = My(G) holds if and only if G does not posscss verlices other than v, vy,
and v, .

Proof is analogous to the proof of Lemma 12, and will not be reproduced here.

Proof of My(P.) < My(T). The transformation G = G*, described in Lemmas 12
and 13, either decreases the Mp-value or leaves it unchanged. In the case of trees, both

G and (3* possess two vertices of degree one, so one can apply the same transformation
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to G*. Repeating the transformation sufficiently many times we ullimately arrive at

P.. D
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