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Abstract

Let U(n,mn) be the set of all unicyclic graphs on n vertices with a maximum matching
of cardinality m (rn > 2). Denote by U*(n,mn) the graph on n vertices obtained from Cj by
attaching n — 2m + 1 pendant edges and m — 2 paths of length 2 together to one of three
vertices of C3. Denote by U?(n,m) the graph on u vertices obtained from Cy by attaching
n — 2m + 1 pendant edges and 1 — 3 paths of length 2 together to one of three vertices,
and two pendant edges to the other two vertices of Cs, respectively. In this paper, we prove
that U*(n,m) and U*(n,m) have the largest and the second largest spectral radius among
the graphs in U(n,m), respectively, when m > 4. We also discuss the corresponding results
whenm =2, 3.

1. Introduction

In quantum chemistry the skeletons of certain non-saturated hydrocarbons arc represented
by graphs. By Hiickel molecular orbital (HMO) theory, energy levels of electrons in such a
molecule are, in fact, the eigenvalues of the corresponding graph. The stability of the molecule
as well as other chemically relevant facts are closely connected with the graph eigenvalues [G,
17]. In particular, following a suggestion by Lovéasz and Pelikdn [24), Cvetkovi¢ and Gutman
[8] proposed that the spectral radius of the melecular graph (of a saturated hydrocarbon) be
used as a measure of branching of the underlying molecule. This direction of rescarch was
eventually further elaborated, with emphasis on acyclic polyenes [13], alkanes [18], and benzenoid
hydrocarbons (15, 16, 25]. To our best knowledge, the spectral radius of unicyclic graphs was,
so far, not considered in the chemical literature. On the other hand, unicyclic graphs represent
important classes of molecules {e.g., monocycloalkanes), and their spectral radius was much
studied in graph spectral theory (sec, e.g., {3, 10, 20, 28]). The evaluation of graph eigenvalues
were the topic of numerous papers (see, e.g., [2]-[4], [7)-[11], [13]-[16], [18]-[28]). Heve we are
concerned with unieyclic graphs.
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In order to describe our results, we need some graph-theoretic notation and terminology.
Other undefined notation may refer to [1].

We consider only finite undirected simple graphs. Let G = (V(G), B(G)) be a graph with
vertex set ¥(G) and edge set E(G). A graph G' = (V(G'), B(G")) is a subgraph of G (written
G'C G)if V(G') € V(G) and E(G') C E(G); If G' # G, G’ is called a proper subgraph of ¢
and written as G' € G, If V(G') = V(G), G' is called a spanning subgraph of G. If W  V(G),
we denote by G — W the subgraph of & obtained by deleting the vertices of W and the edges
incident with them. Similarly, if £’ C E(G), we denote by G — E' the subgraph of (@ obtained
by deleting the edges of £'. If W = {v} and E’ = {zy}, we write G — v aud G — zy instead of
G — {v} and G — {zy}, respectively.

Two edges of a graph are said to be independent if they are not adjacent. An m-matching
M of G is a set of m mutually independent edges. A vertex v is said to be M-saturated, if
some edge of M is incident with v; otherwise, v is M-unsaturated. If every vertex of G is M-
saturated, the matching M is perfect. If G has no matching M’ with |[M’| > |M|, then M is a
maximumn matching; clearly, every perfect matching is maximum. We call the number of edges
in a maximum matching of G the edge-independence number and denote it by o/(G). An M-
alternating path in G is a path whose edges are alternately in E\ M and M. An M-augmenting
path is an M-alternating path whose origin and terminus are M-unsaturated.

We denote by K,, Sp, C, and P, the complete graph, the star, the cycle and the path,
respectively, each on n vertices, and denote by rG the disjoint union of 7 copies of the graph G.
If & graph G has components Gy, Gy,- -+, Gy, then G is denoted by Ui, G:.

Let A(G) the adjacency matrix of G, then Det(A] — A(G)) is called the characteristic poly-
nomial of G and denoted by p(G; A). Since A{G) is real and symmetric, its eigenvalues are real.
These eigenvalues of A(G) are independent of the ordering of the vertices of G, so they are
also called the eigenvalues of G. The largest eigenvalue of G is called the spectral radius of &
and denoted by A(G). In particular, if ¢ is connected, A(G) is irreducible and so A\ (G) has
multiplicity one and there exists a unique positive unit eigenvector corresponding to A {G) by
the Pervon-Frobenius theory of non-negative matrices.

- 2m+ 1 7—2m+ 1
= i

4

' {n, m) % n,m)

Fig. 1

Unicyclic graphs are connected graphs in which the number of edges equals the number of
vertices. Thus a unicyclic graph is either a cycle or a cycle with trees attached. Let U(n) denote
the set of all unicyclic graphs on n vertices and U{n,m) the set of all unicyclic graphs on n
vertices with o (G) = m (m > 2). Let U'(n,m) denote the graph on n vertices obtained from
Cy by attaching n — 2m + 1 pendant edges and m — 2 paths of length 2 together to one of three
vertices of Cs. Let U?(n,m:) dinote the graph on n vertices obtained from Cy by attaching
n - 2m + 1 pendant edges and m - 3 paths of length 2 together to oue of three vertices, and
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two pendant edges to the other two vertices of Cy, respectively. Both U'(n,m) and U?(n,m)
are shown in Fig. 1.

The following result, on the spectral radius of unicyclic graphs, is well known.
Theorem 1.1 (2, 28, 20]. If G is a graph in U(n), then \(Cr) = 2 < A\ (G) < A (S3),
where S denotes the graph obtained from Sy, by joining any two vertices of degree one in §,.

The lower bound is attained if and only if C = Cn. The upper bound is attained of and only of
G = Sh. Moreover, if G 2 Sy, p(G;, A) > p(S5; A) for all A 2 M (G).

Since U(n,m) is a subset of U(n), Theorem 1.1 also holds for the graphs in U(n,m). There-
fore, C,, alone has the smallest spectral radius among the graphs in U(n,m) , where n = 2m or
2m+1, and S (= U’(n,z)) is the unique graph with the largest spectral radius in U(n,2).

When n = 2m, U{n, m) is the set of all unicyclic graphs on 2m vertices with perfect match-
ings. For this case, A. Chang and F. Tian have proved the following result.

Theorem 1.2 [3]. Among the grophs in U(2m,m), U'(2m,m) and U*(2m.in) have the
largest and the second largest spectrel radius, respectively, when m > 4.

The main purpose of this paper is to prove that U!(n, m) and U?*(n,m) have the largest and
the second largest spectral radius among the graphs in U(n,mn), respectively, when m > 4.

2. Preliminaries.

Since the spectral radius of G is the largest root of the equation p(G;A) = 0, we have
plG;A) > 0 for all A > X(G). Then we immediately get the following elementary but useful
result.

Lemma 2.1. Let Gy and G2 be two graphs. If p(G.;A) < p(Gq; A) for A = M (Gh), then
M{G1) > M (G).

It is well known that if G’ is a proper spanning subgraph of a connected graph G, then
M(G) > A1 (G"). Moreover, we have the following result.

Lemma 2.2 [23, 22, 12].
(1) Let G be a connected graph and G' a proper spanning subgraph of G. Then

PG A) > p(G3 A for A2 M(G).
(2) Let G', H' be spanning subgraphs of connected graphs G and H, respectwvely, where
AG) = M\ (H) and G is a proper subgraph of G. Then
p(G'UH";A) > p(GUH; M) for A> \(G).

The following three results are often used to calculate the characteristic polynomials of
unicyclic graphs in our proof.

Lemma 2.3 [6). Let v be a verter of degree | in the graph G and u the verter adjacent to
v. Then p(G; A) = Ap(G —v; A) = p(C - {u, v} A). .«

Lemma 2.4 (6, 27]. Let e = uv be a edge of G and Ce) the set of all cycles contarmmy e.

The characteristic polynomial of G satisfies

P(GiN) = p(G - ;) = p(C — {wwh M) =2 3 p(G\V(2), A).
ZeC(c)
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Lemma 2.5 [6]. If Gy, Ga,+--,G: are the components of a graph G, we have
'
(G5 A) = Hp(G’;; A).
i=1

Lemma 2.6 [1]. A matching M in G is @ marimum matching if and only if G contains no
M -augmenting path.

Lemma 2.7 [22]. Let T be an n-verter tree with an m-matching, where n > 2m. Then
there is an m-matching M and a pendant verter v such that M does not saturate v.

According to the proof of Theorem 1.2, we have the following two lemmas.
Lemma 2.8 (3]. Let G be a graph in U(2m,m) (m # 3) and G % U'(2m,m). Then
p(Gi A) > p(U'(2m,m); A) for A = A (U'(2m,m)). Therefore, \(G) < M (U (2m,11)).

Lemma 2.9 [3]. Let G be a graph in U(2m,m) (m # 3) , G % U'(2m,m), and G #
U?(2m,m). Then p(G;A) > p(U(2m,m); \) for A > M (U%(2m,m)). Therefore, M(G) <
A (U%(2m,m)).

Finally, we list the characteristic polynomials of some graphs which will often be used in our
proof.

Let n and m be positive integers and n > 2m. Denote by A(n,m) the tree obtained from
Sn-m+1 by attaching a pendant edge to each of m — 1 non-central vertices. For n > 2m, denote
by B(n,m) the tree obtained from A(n — 1,m) by attaching a pendant edge to one vertex of
degree 2. Then both A(n,m) and B(n,m) have an m-matching. In Fig. 2, we have drawn
A(:4,6) and B(14,6).

vy

A(14,6) B(14,6)
Fig. 2
Lemma 2.10 [22].
p(A,mEA) = A2 - )™ 2 x (M - (n - m + 1)A% 4 (n - 2m + 1));

P(B(n,m); A) = X232 = 1)y=3 5 M — (n = m+ 2)N + (3n - dm - 1)A% = 2(n - 2m)|.

Lemma 2.11 [27].
PP A) = Ap(Poo13 A) = p(Pro2; A).

By Lemma 2.11, we immediately get p(Py; A) = MA% = 2) and p(Py; A) = A = 3A2 4 1.
3. Main results

Lemma 3.1. Let G be a graph in U(n,m) and G 2 C,,, where n > 2. Then there s an
me-matehing M and a pendant verter v such that M does not saturate v,

Proof. Since C is a graph in U(n,m) and C # C,, G is a cycle attached by some trees. We
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denote this cycle by Cg. Let M’ be a maximum matching of G and u an arbitrary vertex of C
where some trees are attached. Among the two edges in E(Cg) incident with wu, there must be
one edge belonging to E(G)\ M’. We denote this edge by uu;, then T' = G — uw, is an n-vertex
tree with an m-matching M’, where n > 2m. Furthermore, o/(T") = «'(G) = m. (Since T' C G.
o'(T) € &' (G) = m. Noting that M’ is an m-matching of T, we have o/(T) > m. Therefore,
o(T) =m.)

For the graph T, by Lemma 2.7, there is an m-matching M and a pendant vertex v such
that M does not saturate v. If v # u), then v is also a pendant vertex of G. Noting that M is
also an m-matching of G, the result holds. If v = u;, let uz be the unique vertex of Cg adjacent
to 1y in 7. The vertex up must be saturated. (Otherwise, M U {ujuzg} is an (m+ 1)-matching of
T, which contradicts o/ (T') = m.) Let P = wyup - -~ (¢ > 3) be the longest M-alternating path
of 7" which starts from u;. Then wu, is M-saturated for otherwise P is an M-augmenting path
of T contradicting Lemma 2.6. Moreover, v, is a pendant vertex of T'. Otherwise, it contradicts
the choice of P. Therefore, the symmetric difference M A P is an m-matching M” of G and
w(# wy) is an M"-unsaturated pendant vertex of G. This completes the proof of Lemma 3.1. =

Theorem 3.2 Let G be a graph in U(n,m), m > 4, and G % U'(n,m). Then X(G) <
MU (n,m)).

Proof. Let G be a graph in U(n,m), m > 4, and G ¥ U'(n,m). If G is a cycle. the result
liolds iminediately. So we suppose G is not a cycle. By Lemma 2.1, it is sufficient to prove
p(G; A) > p(U¥ (n,m); X) for A > A (U'(n, m)). We prove this by induction on n.

When n = 2m, the result holds by Lemma 2.8. Now we suppose n > 2m and the result
holds for graphs in U(n — 1,m) which are not isomorpl_lic to U'(n — 1,m). By Lemma 3.1, G
uas an m-matching M and a pendant vertex v such that M does not saturate v. Let u be the
vertex of G adjacent to v and v'u’ a pendant edge of U'(n, m) attached to C; (sce Fig. 1).

By Lemma 2.3, we have

]

p(G;A) Ap(G - v) - p(G - {u,v};A),
p(U (n,m)\) = Ap(U'(n,m) — v} A) = p(U (n,m) - {v',0'};A).

It is easy to see that G —v € U(n = 1,m) and Ul(n,m) - v' = U}(n —~ 1,m). By the induction
hypothesis,

PG = v;2) 2 p(U(n,m) — o'} A) for A > A (U (n,m) - v').

By Lemma 2.1, Ay (U (n,m)=v') > \(G-u). Since Ul(n,m)-{v'. '} = (m—1}KaU(n—2m) K,
G # U'(n,m) and G — {u,v} has an (m - 1)-matching, U'(n,m) — {v', '} is a proper sparning
subgraph of G — {u,v}. By Lemma 2.2,

PG = {u, v} A) < p(U'(n,m) — {v/,¢'}; ) for A > A (G - {u,v}).
Since A\ (U (n,m)) > (U (n,m) = v') > A (G - v) > M (G - {u,v}), we get
p(G; A) > p(U' (n,m); A) for A > M (U (n, m))

It is known that the graph S} 22 U'(n, 2) has the largest spectral radius among, the graphs
in {/(n,2), and so we have
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Theorem 3.3. The graph U'(n,m) alone has the largest spectral radius in U(n,m), when
m# 3.

Before proving that U2(n, m) has the second largest spectral radius in U(n,m), we give the
characteristic polynomials of some graphs which will be used in our proof.

Lemma 3.4. Let n and m be two integers such that n > 2m and m > 4. Denote by G,, G,
Ge, Ga and G, the graphs shown in Fig. 8 and 4, respectively. Then

pUn,m);A) = A% - 1) A% - (n— m 4 4)2° - 205 4 (4n - 5m + 3)A¢

+20% - (dn - Tm 4+ 4)A2 + (n - 2m + 1))

P(Ga;A) = A2 )™ 8 - (n-m 4+ 4)2% - 20° 4 (dn — 5m + 5)A°
+6X% - (5n — 8m + 3)A2 — 4\ + (2n — dm + 1))

PGy A) = A2 = 18 — (0 - m 4+ 4)A° - 2% 4 (4n — Sm 4 4)A4
+6X% - (51 — 8m + 1)A2 = 4A + (2n - 4m))

PG A) = AI(NZ — 1™ A8 — (n - m + 4)A5 — 20% 4 (4n — Sm 4 4)M
+42% — (5n - 8m +2)A7 — 24 + (21 - dm + 1))

PGsA) = (V=1 = (m+5)AT = 2X° 4+ (3m + 9)X° + 6X% — (3m + 7)N
~6AZ 4 (m+2)A+ 2]

pGe;A) = A2m(A2 - )™ AR — (n—m 4+ )M 4 (dn — 5m + 3)A?
~(5n — 8m)A% + (2n — 4m)].

n—2m
=

=

u v
.
( 1)

Td
Ge Cs (n=2m+
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Proof. For the graph U?(n,m), let w, and wy be two vertices of C3 shown in Fig. 1. By
Lemma 2.4, we have

pUn,m)A) = p(U(n,m)— wiw; A) = p(UP(n,m) = {wy, wa}; A)
—2p((n — 2m + 3) K, U (m — 3)K2; A).

Noting that U%(n, m) — wiwe = A(n,m) and U%(n,m) — {w), w2} = 2K, U A(n — 4,m — 2),
by Lemmas 2.5 and 2.10, we have

p(Un,m)A) = A2 1)™ 8 — (n—m + A% - 225 + (4n — 5m + AY
+2X% ~ (dn — T + 4)2% + (n - 2m + 1))
For the graph Gy, let x4, ¥4, v and u be the vertices shown in Fig. 3, by Lemmas 2.3 and

2.4, we have

P(Ga; A)

Ap(Ga = v;A) = p(Ga — {v,u}; A)

= MU n-1,m)A) - pUn-2,m—1);7)

= A[P(Ul("' - 1,m) — Taya; A) — p(U‘(n ~1,m) = {Za, ¥ }; A)

=2p((n - 2m)K, U (m — 2)Ka; M)} — {p(U‘(n —2,m — 1) - TaYa; A)
—p(UNn—2,m = 1) = {&a,ya}: A) ~ 2p{(n — 2m + 1)K, U (m — 3)Ka; A].

Noting that Ul(n = 1,m) = TaYa = A{n—1,m), U{(n - 1,m) - {Ta,v0} & (n—2m+ 1)K, U
(m—2)Ka, Ulln — 2,m — 1) — 2oy = A(n —2,m — 1) and U'(n — 2,m ~ 1) - {20, va} =
(n = 2m + 2)J; U (m — 3)K3, by Lemmas 2.5 and 2.10, we have

P(Ga;d) = A2 1) A8 — (n— m 4+ 4)A5 - 2X% + (4n — 5m + 5)\4
+62% - (57 — 8m + 3)A7 — 4A + (2n — 4m + 1)].

Similarly, we can calculate the characteristic polynomials of graphs Gy, G., Gy and G, by
using Lemmas 2.3, 2.4, 2.5, 2.10 and 2.11. =

Theorem 3.5. Let G be a graph in U(n,m), G % Ul(n,m) and G ¥ U*(n,m), where
m > 4. Then A(G) < \(U%(n, m)).

Proof. Let G be a graph in U(n,m), G 2 U'(n,m) and G % U%(n,m), where m > 4. I[f ¢
is a cycle, the result holds immediately. So we suppose G is not a cycle. By Lemma 2.1, it is
sufficient to prove p{G;A) > p(U*(n,m); A) for A > A (U?(n, m)). We prove this by induction
on n.

When n = 2m, the result holds by Lemma 2.9. Now we suppose n > 2m and the result
holds for graphs in U(n - 1,m) which are isomorphic to neither U'(n — 1,m) nor U%(n — |, m).
By Lemma 3.1, G has an m-matching M and a pendant vertex v such that M does not saturate
v. Let u be the vertex of G adjacent to v and v'u’ a pendant edge of U?(n,m) attached to Cy
together with m — 2 paths of length 2 (see Fig. 1).

Case 1. G- v=U'(n-1,m).

Since G = v = U'(n - 1,m) and G ¥ U'(n,m), G must be isomorphic to one of the graphs
shown in Fig. 3.



104

If G = G,, we have
P(Ga; A) - p(UP(n,m); \)

AEROZ 20 4 4N - (- m - 1)A% - 4
+n - 2m)| §

= APOZ 1) - (n - m)A% - 2m 4 fa(M),
where fa(A) = M +4)3 4+ A2 — 4,

Since A(n — 1,m) is a proper subgraph of U?(n,m), A\j(U%(n,m)) > X\j(A(n ~ 1,m)). Thus
p(A(n = 1,m); A) > 0 for A > Aj(U*(r, m)). It follows that

M-(n-m)A2 +n-2m >0 for A= \(U(n,m)).

Since f4(A) = 4X° + 1202+ 24— 4 > 0 for A > 2 and fo(2) = 44 > 0, we have f,(}) > 0 for
A > 2. By Theorem 1.1, Ay (U3(n,m)) > 2. So fa(A) > 0 for A 2 A {U?(n,m)). Thus

p(Ga; N) > p(U%n, m); A) for A = M(U(n, m)).
For the remaining three cases, the proofs are similar.
Case 2. G —v = U*n - 1,m).

Since G - v = U%(n - 1,m) and G % U?*(n, m), then G is isomorphic to one of the graphs
shown in Fig. 5.

n-2m
~—

n—2m n-2m

(n=2m+1)

Iig. 5

By Lemma 2.2, we have

PGIA) = MG -v0) - p(G — {n, 0} A),
p(Uz(n,m); A) Ap(Uz(u, m) - vy A) — p(U"’(ﬂ,m) - {v,u'}; )

il
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Obviously, G — v = U2(n,m) — v' 2 U%(n — 1,m) and U*(n,m) - {v/,0'} = (m - 3)K, U (n —
2m)K\ U Py. Then p(G ~ v;A) = p(U%{n,m) — v'; A). It is easy to see that UZ(n, m) — {v' '}
is a proper spanning subgraph of G — {u,v}. So by Lemma 2.3, we have

p(U%(n,m) - (o', w'h ) > p(G = {w,v};A) for A2 Ay (G — {w,v}).
Since A (U?(n,m)) > M\(G - v) > M (G — {u,v}), we have

p(G; N) > p(U(n,m); A) for A= \(U%(n, m)).

Case 3. G-v2U!(n-1,m) and G~ v # U%(n-1,m).

Since G—v e Un-1,m), G-v ¥ Uln—1,m) and G -v ¥ U%(n—1,m), by the induction
hypothesis, we have

P(G ~u;A) > p(U%(n,m) —v'5 M) for A 2 \(U3(n,m) — o).

If U(n,m) — {+/,u'} is a proper spanning subgraph of G — {»,u}, the result holds by
Lemma 2.3. If I/%(n,m) — {v/, '} is not a proper spanning subgraph of G - {v,u}, G — {v,u}
is isomorphic to one of the graphs shown in Fig. 6 or to a graph G’ on n — 2 vertices with
a'(G’) = m — 1. Furthermore, at least one component of G has more than two vertices and no
component contains Py. Such a component of G’ must be a star S (¢ > 2).

vei e ..

——— ——

n—2m n-—2m
m-1m=2 m-3 1 m-1m=-2 m-3 1

Fig. 6

Since G % U'(n,m), G ¢ U¥(n,m), G- v ¥ U'(n~1,m) and G - v ¥ U%n - 1,m), G
must be one of the graphs shown in Fig. 7 and Fig. 8. In Fig. 8, G; is a graph on n vertices
which is not isomorphic to U'(n, ) and each box represents a component of G; — {v,u}, i.c. a
star Sy (t > 2) (i =1,2).

}m—:!

n—2m+1
s

}.H
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n=2m41
s

Fig. 7

V1 G G2
(t120,6221) (320, t421)

Fig. 8

For the graphs G in Fig. 7, we have p(G—v; A) > p(U*(n,m)—1"; A) for A > A (U%(n, m}~v')
and p(G - {u,0};A) = p(U%(n,m) - {¥',v'}; A), since G - {u,v} = U*n,m) —fv', v} =
(m — 3)K2 U (n — 2m)K; U Py. Thus the result holds.

For the graph Gy, we distinguish the following two cases:

MG 2CG o G EGyor G, 2G..

By the proof of Case 1, the result holds.

(2) Gy % Ga, G1 2 Gp and G| £ Ge.

When t; > 1, we replace vertices v,u by vy, u; (as shown in Fig. 8) , respectively; When
t) = 0, since G| % U*(n, m), at least one componeut of G; — {u,v} has more than two vertices.
In other words, there must be a star Sy.(r; > 3}). Then we choose a pendant vertex vy of
Gy (v € V(S,,)) and the vertex uz adjacent to vg, and replace v,u by vs,ua, respectively.
Since Gy % Gu, G1 2 Gyand Gy 2 G, Gi—v € Uln—1,m), Gy —v & Ul(n - 1,m),
Gy = v % U*n - 1,m) and U%(n,m) ~ {v',u'} is a proper spanning subgraph of G — {v.u}.
Then the result holds.

For the graph (53, we also distinguish two cases:

(1) G2 = Ce.

Here we have

PG N) - p(Umym)A) = A 22— 1) 20 - 203 - (n—m - 4)\?
tn - 2m - 1)
Al )N (e -m 4 DA k- 2m ]
+f(

where fo(A) = 2A% - M =203 + 547 - 2.
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Since A(n,m) is a proper subgraph of U%(n,m), A1 (U%(n,m)) > A (A(n,m)). It follows that
Mo(n-m+1DMN+n-2m+1>0.

Thus p(A(r,m);A) > 0 for A > A(U%(n,m)). Since fi(A) = 10A* = 423 — 6A2 + 10A =

2X2(5A% — 23 — 3) + 10X > 0 for A > 2 and £,(2) = 50 > 0, we have f.(A\) > 0 for A > 2. By
Theorem 1.1, A (U%(n,m)) > 2. So fo{)\) >0, for A > \(U?(n,m)). Thus

p(Ge; ) > p(UP(n,m); A} for A > A(UP(n, m)).

(2) G2 % G..

If t3 > 1, we replace vertices v,u by v3,u3 (as shown in Fig. 8) , respectively; If t3 = 0,
then at least one component of Gy — {u,v} has more than two vertices. In other words, there
must be a star Sy, (h; > 3). Then we choose a pendant vertex vy of Gy(vq € V(Sp,)) and the
vertex u4 adjacent to v4, and replace v,u by v4,uq, respectively. Then Gy — v € U(n — 1,m),
Gy—v# Uln - 1,m), Go —v % U*(n—1,m) and U?(n,m) - {v/,'} is a proper spanning
subgraph of Ga — {v,u}. Then the result holds. This completes the proof of Theorem 3.5. =

Remark

From the table of the spectra of connected graphs on six vertices in (9}, we known that
U%(6,3) and U'(6,3) have the largest and the second largest spectral radius among the graphs
in U(6,3). So Theorem 3.3 and 3.5 do not hold when n = 6 and m = 3. However, when n =7
and m = 3, Theorem 3.3 and 3.5 hold, by the table of the spectra of graphs on seven vertices in
[5). In fact, with proofs similar to those of Theorems 373 and 3.5, we can obtain the following
result.

U'(n, 3) and U?(n, 3) have the largest and the second largest spectral radius among the graphs
inU(n,3), wheren > 7.

From the table of the spectra of connected graphs on n vertices (2 < n < 5) in [6], C; has
the second largest spectral radius among the graphs in U(4,2). When n > 5 and m = 2, with a
proof similar to that of Theorem 3.5, we can prove the following result.

U*(n,2) has the second largest spectral radius among the graphs in U(n,2) (n > 5), where
/%(n, 2) is the graph on n vertices formed from Cy by attaching n — 4 pendant edges to one of
three vertices and one pendant edge to another vertex of Cy (as shown in Fig. 9).

U3 (n.2)

Fig. 9
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