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Abstract

‘The asymptotic properties of the Balaban index for Fibonacci trees are analyzed. While this
topological index diverges for highly branched molecular graphs, the restricted type of branching
exhibited by Fibonacci trees allows the origin of this divergence to be identified and corrected for.
Further it is demonstrated that the nature of the branching pattern determines the scaled asymptotic
limit for this distance matrix based topological index, rather than the initial graph from which the

branching emanates. The same type of analysis is illustrated for a typical dendrimer.

Introduction

Topological indices have been used extensively for the prediction of physical properties of specific classes
of molecules [1]. The two most important distance matrix based topological indices are the Wiener index
[2) and the Balaban index [3]. The asymptotic behavior of the Balaban index for linear polymers with well
defined (i.e. finite and repetitive) branching patterns along the main chain has been previously analyzed
[4]. Unlike the Wiener index which diverges [2], the behavior of the Balaban index mimics the behavior of
the melting temperatures and glass transition temperatures for linear macromolecules, which possess an
asymptotic limit for these physical properties [5]. Unfortunately, for highly branched molecular graphs

(i.e. for structures in which the branching pattern involves the formation of branches off other branches)

the Balaban index diverges too.

Polymer muolecules with complex branching patterns represent a class of molecular graphs which are
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known to require special treatment for topological analysis [6,7). Understanding the asymptotic behavior
of a topological index is critical to successfully modeling the physical properties of highly branched
macromolecules. Therefore, in order to identify the effect of branching on the Balaban index for highly
branched graphs, an analysis of the distance matrix for a class of molecular graphs possessing a well-
defined and restricted branching pattern has been undertaken.

It was decided to restrict the branching pattern in a way which would generate a molecular graph
that contains some substructure, but was not symmetrical. I'herefore, we have undertaken an asyraptotic
analysis of Fibonacci trees. This is a special case of Fibonacei graphs which have been previously defined

[8]. The Balaban index for hydrocarbons is given by

Jo

i ]
where G is the molecular graph, @ is the number of edges in G, C is the number of cycles in G (the
cyclomatic number) which in the case of trees is zero, and d; and dj are the row sums in the distance
matrix for vertices i and j, respectively (3], and the sum is taken over all edges i,j. It is how this sum
diverges as the molecular graph grows that we are primarily interested in understanding. The following
analysis illustrates the key aspect to the behavior of the sum in equation (1) and how it should be scaled

to produce a non-zero finite limit that is directly related to the branching pattern in the molecular graph.

2 Definitions

The Fibonacci series is recursively defined to be fo = 1, fi = 1, and f,, = fao1 + fu-2 forn = 2,3, ..
The Fibonacei trees are unlabeled binary trees that can also be defined recursively as Fj = empty tree,
F| == a single vertex, and F, is a tree with F,,_; and F,_» as left and right subtrees. It is easy to see
that F, has f,4, ~ | vertices.

We now define labeled trees T,, for all n > 1 (Figure 1), which is the first molecular graph under
discussion. We will show later that T, has the same tree structure as /.. DBut we define T, using
a different recurrence relation so that its vertices will be labeled by integers 1 through fn4, ~ 1. This
labeling has nice properties that will greatly facilitate later discussions. The vertices will also be identified
by their labels in cases where there is no confusion. For reasons that we will see later on, we will define
T, -y instead of T),.

PROPOSITION 2.1
{Construction of T},) Let Ty = a single vertex labelled by i. Then we are able to get T, .y forn >3

by adding vertices [y, Ja-1 + 1, ..., fu — 1 to T,y according to the following:
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LI fnor S5 € 2fu-2— 1, attach a new vertex labeled by j to vertex j — fn_o (which is in 15, _») as

its right child;
2. If2fn-2 £ j < fa = 1, attach a new vertex labeled j to vertex j — f,_» as its left child.

This means, vertex j — fn_2 is a leaf in Tp_a.

T

Ts

Figure 1: Examples of 7},

Proof.
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We need to prove that in cases 1 and 2, before attaching the vertex labeled by j to vertex j — [y
as its left or right child, vertex j — fn_, does not already have a left or right child. In other words, we
need to prove the construction method is well-defined.

We prove the Proposition by induction on n.

The case when n = 3 is trivial. Suppose we can construct trees up to Tx..z, or, for all (n—1) < (k-2)
according to the above rules. So now we have vertices 1 through fx_; — 1 in the tree Tk_2, and we need

to attach vertices fi_q, ..., fx — 1 to Tx_a to get Ti_y.

1. When fi—y €j < 2ficz~1,01, fiea €5~ fre2 € fi_2—1, according to the construction scheme,
J = fx~2 must have been added to Ty_4 to form Th_3. Also, fi—2, ..., 2fx—3 — 1 were attached to
Sfe—a, -~y fr-3—1 as their right children; and 2f;_3, ..., fi—y — | were attached to fy_a, ..., fi_a—1
as their left children, to form Ti—2 from Ti_3. But fi_3 < j~ fic2 € fa—a — 1, 50 vertex j ~ fr-a

has no right child in Tx_. The recurrence rule (1) is workable.

2. When 2fx_3 <5 < fy~1,wehave fi_p <j— fi_a < fi—; — 1, from the above argument, we know

j = fx—2 has no children in Ty_,. The recurrence rule (2) is workable.

COROLLARY 2.2
For any vertex i such that fy_ <1< fi — 1, if i has left and/or right child in any T,, they are labeled
by i+ fx-y and i+ fx, and vertices i, i+ fx_\ and i + fy first appear, respectively, in trees Tk, Ti and

Tiys-

Proof. If fi.y €1 < fi = 1, then by definition of T, vertex 1 first appeared in tree T%_; and 2fk_y <
i+ fee1 € feq1 — 1, from (2) in Proposition 2.1, we know vertex i + fr_, should be the left child of i
and it first appeared in Tx. Similarly, fry1 < i+ fi < 2fk — 1 and from (1) in Proposition 2.1, vertex
i+ fi should be the right child of 4, and it first appeared in tree Ty, 8]

The relation between the labels of vertex ¢ and its two children proved in the corollary will turn out to
be of crucial to our later proofs and we call it the pareni-children relation. Obviously the parent-children
relation uniguely determine: the labeling of any T,

The distance between two vertices in a tree is defined to be the number of edges in the shortest path
connecting them. Let the distance sum(distasum) of a vertex be the sum of distances from this vertes
to all other vertices in the tree they are in. Denote by d,,, the distasum of vertex i in T,,, it will be
proved in Corollary 4.4 that

Fy i 1
tlnl Sth

T Z‘/d,,.d, o

where Ry = fu g - 1is the number of vertices in T, aud the sum is taken over all edges {13} in 1.
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Figure 2: The parent-children relation
3 Properties of T,

The descendants of a vertex in a tree are all the vertices in the subtree with the vertex as the root except
the vertex itself. In a binary tree, the left descendants and right descendants of a vertex are simply the
vertices in the left and right subtrees of the vertex.

LEMMA 3.1

[et2<i<n+land fi_y €<j < fi—1. TheninT,, vertex j has f,_,y3 — 2 descendants, among which

fa-i+2 — 1 are left descendants, fn—i+1 — 1 are right descendants.

Proof. We prove the lemma by induction on i. First consider ¢ = n + 1, then the lemma is true since any
vertex j such that f, < j < fny1—1 has no descendant by Corollary 2.2. If i = n, then we have, according
to the proof of Proposition 2.1 Corollary 2.2, j has one left descendant and no right descendant. Suppose
thelemma is true fori = n+lL,n,n—1, ... k41, (k <n-1). Cox-xsider vertex j such that fx—, < j < fi—1,
then according to Corollary 2.2, 7 has both left and right children. Let them be ¢, and ¢2. Then according
to the parent-children relation, ¢ = j+ fry1,50 2fx_1 €1 € fezr =1, 01, fi €¢1 € fear = 1. Thus by

the induction hypothesis, ¢y has fn_ (k41343 — 2 descendants. Similarly, c2 has fa_x43 — 2 descendants.

Trelds

¢; and ¢ th Ives, 7 has (frn_(e41)+3 = 2) + (fa-k4a = 2) + 2= fa_(ro1)43 — 2 descendants.
So the case when 1 = & — 1 is true. =]

THEOREM 3.2

T, is isomorphic to I, for any n > 1.

Proof. As seen in the proof of the above lemma, in any T),, the subtree determined by any vertex and
its left and right subtrces (when they exist) have the sizes equal to three consecutive Fibonacei numbers
each subtracting 1. This property along with the size of T}, uniquely determines the tree structure of T),.
But the Fibonaccei tree F), also has the same property by its definition, and its size is equal to that of 75,
thus the two trees have the same tree structure. o

Lel us denote the set of vertices on the ith horizontal level of vertices (starting with 1 being on
the first level) in T, by Ly n, and denote the number of elements in L;,, by 1, .. For example, Lag =

{vertices 4,5,6,8}, and I55 = 4. Obviously 7}, has n levels.



THEOREM 3.3

The number of vertices in the (i1 + 1)th level in Tyyy is

Livime

> 2
il |
o i
i)
o
p

Proof. Because of Theorem 3.2, we can easily write down the recurrence relation
bivindt =lin+hn 1,

where by ., = 1 for all m > 1. If we can prove Y724 (1) satisfies the same initial condition and recurrence

relation then we are done. The initial condition is easily satisfied. Also we have

(n=2)—(i-1)

oGP GIREGIER)

k=0 k=0
n—i—1 z . s n=i s & n-~-i
S+ (-850 - 6)-50)
= Z g + = Z : + = i fe
= (( k k+1 0 = k+1 0 = k
So the recurrence relation is also satisfied. a

An immediate consequence of Theorem 3.2 is
n nolasi 1
tin =361 xh.mggg( : )
But from the following recurrence relation we can get more information about the asymptotic value of
dras
LEMMA 3.4

The recutrence relation for dy n {n > 3) is

din=din1 Tdinot faq1 -2

v 3
and dy,, = gnr"™ + O(r"), where ¢ = (‘/;45 1) and r =1 1-2\/5 is the golden ratio

Proof. Because of Theorem 3.2, we can see that dy , = (dy n- + nuinber of vertices in Tp) + (d) n-2+
nuwmber of vertices in Ty _3) = dj noy Fdin—2 + fapr — 2

From this, we can write down the generating function D, {z) of d; ,:

:2(1 +
D|(:{‘):—_-_*J ( z) —-
(1 -z2)(l-z-2°)
Therefore, if we let ry = ; ;2\/5, T o= . :2\/§ =1 +2‘5, there is
Di(z) = @ b c g

+ + oy T
l=-mz (1-rnz)? l1-rz (1-rz)? l1-z
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where a, b, ¢, g are constants and thus

Di(z) =ad (n2)* +03 (k+D(mz) +cd (ra) +93 (k+1)(ra)t +23 2,
k=0 k=0 k=0 k=0 k=0
Therefore, we have
din =2+ (a+bn+ D)7 + (c+gln+1))r" = gne™ + O(r™)
asn — 00. a

THEOREM 3.5

Forfici €7 fi-1,3<i<n+],
d;,n = dj—!. 2t R, — 2(fn-|'+3 = 1)-

Proof. We know that vertex j — f;_2 is the parent of vertex j from the definition of T}, and j is the root
of a subtree of size fn_;43 — 1 from Lemma 3.1. Now consider adding a “phantom” vertex “z” that is
connected to j and j— f.—2, each by an edge. If we let the distasum of z in T, be d; ,,, then thereis dy,, =
dj—fo—2m+ fu-iva— L and dyn = dj 4+ Ry = (famita = 1). Thus djn = djp,_,n+ R~ 2(fa-iss — 1).

(u]

4 Asymptotic values

Let (i) = the label of the left-most vertex in the ith level in T},. Then according the to parent-children

relation, it is easy to see that

@ =1+fi+h+. .+ ficr=fin—-1,

So fi € (i) € fiz1 = 1, and from Theorem 3.5, we have

diiyn = diiotyn + B = 2(fn-(isnsa — 1)
=di—ayn + Bn = 2(fa-isa = 1) + Ra = 2(fa_isys3 — 1)

=duya (= Dftn = 2fa-rnpes + faciva + oot faszea ~ (- 1))

=din+i-Rn—2(=fnt3-i+ Jns2 = (i = 1)) + Rn.

Remembering that dy , = gnr™ + O(r™), R, = fu41 — 1, and

N (t +\/5)n+l —(1- \/g)nn Pt

fu P = 75 +o(r"),

we have

]
+ O(r™).

VA

4

d(,‘).“ = gur" +1
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Therefore,

d 1 1
L.n . g O(-—)A
d(,-).,, e ir n
n g5

After some routine calculation, we get
LEMMA 4.1

For large enough n and 1 < i < n,

d; ! i
\f - = - +0(=).
di).n i 1), ! &

1
1=
n g5

THEOREM 4.2
Let «f(,)'ﬂ be the distasum of any vertex on tth level T, , there is

J(,—),, 1
o UL o=
l_d <1+ (n)

(i)n

Proof. From Theorem 3.5, forany fi_; <j < fi-1,i=2,3,..,n41,
dj_,, T Gji-ficam = Rn — 2(fr-—i+3 = 1)-

So the differences between the distasums of any vertex and its parent can only be chosen from the values
Rp ~2(f2 = 1), Rn - 2(f3 - 1),..., Rr — 2(fn — 1); which we will call the Differences (of T,,}. Obviously,
cf(,)‘,, is the sum of ¢, and (i — 1) Differences. Observe that dy),n is the smallest among all &(‘)b,., since

it is {dy,,, + the smallest (i — 1) Differences). Therefore,
dign < &(i),n < dy o + the largest (i — 1) Differences
=dvat(i= DRy +2(i=1) =2 fi=dia+ (i DR+ 20 +2) = 2fip1.

k=2

Thus, for large encugh n,

e diyn 2 gnr” 4+ (i — )Ry + 201+ 2) — 2fiyy

T diyn T gnr™ + (i = 3R + 2fngs-i

=1+0(2)

THEOREM 4.3

Let h..(%) = x,:;l', (,:) end S, = Y1, h,.(%). Let f(x} be any continuous function defined on [0,1]
Then we have
1

(),
o [

tim S
i=1
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Proof. According to {10, Section 1.1}, we just need to check the cases when f(2) = z and z*. Notice that
S0 = Rapy = fasa — 1= Lo 4 o(r")
n = llnp n+2 5

When f(z) = x, the numerator of the sum on the left is equal to

n o Lon—i n n=i ;.
T ( ) 1 . 1
YA () =atean () -
=0k h k=0 k
It is easy to see that the first term in the parenthesis has generating function = )(] 7 , after
-z—x
breaking down this into partial fractions as in the proof of Lemma 3.4, we see the leading term is equal

to +’r"!—, multiplying by % and dividing by S,, the limit goes to —=.
0-20+3 ) L

When f(z) = 22, the numerator of the sum on the left is equal to

i(%) Z()“( )22(1+1)(,+2)Z(') ).

i=0 k=0

The generating function of the first sum in the parenthesis is , and it has leading

2
(1-z)(l—-z-2°
. After multiplying by 'r%! and dividing by S,, the limit goes to ?

2.n
term r

1 1
e (i )?

Intuitively, h, behaves like a delta function with pulse at 77'5 when n — co.

COROLLARY 4.4

dl 4T
lim Z
s g, Y

Proof. Notice in Theorem 4.3, hn(38) = L;, 1041 and Sy = R yy. Let f(z) = —1,_ According to
1+ :—

gvh

Theorem 4.2 and Theorem 4.3 ,

diim 1
lim iz =

n—eco R, [”} Vdind;n =

—_——
Vigvs
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5 Other examples

Now we study the trees of another two types of molecular graphs.

The “even-symmetric” trees (Figure 3) E, (n > 1) are formed by connecting the roots of two copies

of T,.’s using an edge.

JXY

Figure 3: Even-symmetric Lree

1f we denote by ., the distasum of vertex j (there are two of them now) in En, it is easy to see that
dijp=2din+ Roandd;, =dj_; o+ Rn=2faoipsr) for fin <5< fi-land 3 <i<n;thisis
the same recurrence relation for d; .. As n — oo, since Ry, is of a smaller order than that of d) n, we see
dy
that T&llr": — 1. Let R!, = number of vertices in E, = 2R,. We have

U

i Jin 1 B 2d1n 1 2y 1
im -—— R lim

1
= ( + ) = -
n—co R (5} i E. "d‘ nd;. n—oco 2R, (i) in T V2di 22dj 0 2R, 2([.‘!.“ 2

The “odd-symmetric” trees (Figure 4) O, (n > 1) are formed also by connecting two copies of T.’s,

but this time by connecting each root to another vertex by an edge. We label this vertex by 0.

Figure 4: Odd-symmetric tree

Il we denote by df, the distasum of vertex j (there arc Lwn of them now) in O, then therc is
dy = 2l 2+ 2R, and 2-?‘55«- = Lidf, =2dy, + 2R, + 1 and ﬂl'_"' — 1. We also have o/, = d/. +

fioum
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Ry —2(fn-its 1)- Similarly as the even-symmetric case, let Rl = number of vertices in O, = 2R, + 1,

we have

it

dy 1 2din 1
im -2 Y ———s = lim S =
n—o R " n—co ‘2R +1 3 s "
T Y in 0, VEndin U ) in T, ‘/2'1‘-"2‘11»" \/d i

6 Conclusions

B3 -

6.1 Balaban Index of T,
Recall the Balaban Index that was defined in equation 1. For T, let the Balaban index be denoted by
Jr,. Since T, is a tree, there is no cycle in it and the total number of edges is just R, — 1. Thus we get

=(Ra-1)Y ——— —
{i7}

+1
In T, since as n — 00, dy,, ~ gnr™ and R, ~ %g- Corollary 4.4 is equivalent to

V5
e T

Therefore,

ligh e =
.,H‘éo(n,,-l)"'“ 27

n-1 n—1 n-1

o1, Jr, ~ I'Q'n,_ Similarly, Jg, ~ Lﬁn_ and Jo, ~ -’:?-n— Thus although the Balaban indices for these
molecules diverge, we are able to predict their asymptotic behavior. The asymptotic behavior of the three
cases are the same because the even and odd symmetric cases preserved the delta-function like behavior

of the Fibonacci tree.

6.2 The Reason for a Different Factor

In the calculation of the Balaban index for a graph, the factor Cg—_l is usually simple, and it is the sum
E(_j.) f}fsdj that may be hard to find. In our study of T},, after determining the structure of T, we find
din can be found recursively from d, ,. Furthermore, we find all d, , arc roughly of the same order of
dy» (or, up to a lactor of —zl——r,— see Lemma 3.1). We can therefore predict that we will get a finite
L ;g‘/g
din

positive constant when we multiply the sum by the factor o and eventually obtain the asymptotic
n

behavior of the Balaban index.
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The following two figures show the true value of the Balaban index for the Fibanacci molecules and
the index with different scaling versus the gencrations. The Balaban index grows exponentially (so the

logarithm of it grows linearly) and after rescaling, it goes to % (see figures 5 and 6).

10’

original J

0 ' i L §e L i "
1 0 5 10 15 20 25 30 35 40 45
generation

Figure 5: The logarithm of J versus generation

0.85 T T

0.81 1

45

din

m J, :
Figure 6: =% versus gencration
"
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6.3 Dendrimer

Figure 7: Dendrimer

Our method of studying the Balaban index can also be applied to other trees. For example, consider
the tree of a dendrimer molecule, which is three identical complete binary trees with their roots connected
to another vertex. Let us define N,, (n > 1) be the Dendrimer tree with the root having three subtrees ,
each a complete binary tree with n levels of vertices (with their roots being on the first level). Label the
oot of Ny, with 0, all its three children on the first level with 1, all the vertices on the second level with
2,..., and all the vertices on the nth level with n. It is easy to see that the size of N, is Rn = 32" —-1)+1,
and the distasium of 0 is dg n = 3X 1 27 = 3((n—1)2" +1) = 3n2"+0(2"). Let d; » be the distasum
of any vertex on the ith level, by an argument completely parallel to that in the proof of Theorem 3.5,
we get

din= dioyn + R — 2027 - 1)

So we sce d-.-,“ can also be found recursively from d, ,. after expanding the above recurrence relation and

plugging in d.| n, We get
din =2"@(n+1) 4277 = 7) + 3 =3(n +1)2" + O(2").
So following the same argument as it in the proof of Lemma 4.1, we get
1

L = O(-l-).
dindi-in 3141 L
n

and since the number of vertices on the ith level is 3 - 271, we have

don 5 1 1i gE=n 1
it ==Yy “—+0(=).
B (53 V dindican 2514 ;1- gl

This sumn is easier than the one we analyzed for T),, since as n - oo,
" ogi-n nogi

Z 122 ;R:I—Z’"—‘L

i=l ]l ¢ — i=1
n
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and if we let k = [n - /7], then

n 2;.«. k n gi-n
. * B.—3

.|1+-— i +— =k+l.1+-

<Z

-Ak+|l+—
Y4k—
=2k+1—nﬁ21~ﬂ+2_2 1 "
O s e
Vvn

Therefore, "7 —“z—-—»lasnﬂoo or,
4,

Thus, the Balaban index Jy, of the dendrimer molecule will be approximately 3 2

l'or large n.
Therefore we have TNA ~ E(EJ“*‘ ~ 6'(0'809)"_1’ which illustrates how the asymptotic behavior of

these two different branching patterns can be compared.

Appendix: Another Labeling Scheme for 7,

From the proof of Theorem 4.2, we know for an arbitrary vertex (1) on the ith level in T,,, J(i)_,‘ is the
sum of dy , and 7 Differences among Ry — 2(fn—j41 = 1) (j = 1,2,...,n—1). We will be able to see more
clearly which ¢ Differences they should be by labeling 7%, differently, or equivalently, by labeling F,,. We

will call the newly labeled trees P, for n = 1,2, ... (Figure 8)

1. Label the vertex in Iy by an empty string and let it be P). Label the root in I by 0 and let its

left child be labeled by 1 and let the new tree be Ps.

2. To get P, for n > 3, label the root with a strirg of n—1 0’s, add 1 at the beginning of each label of
In—y and let this newly labeled trec be the lelt subtree of the root of £,; add 01 at the beginning

of each label of I’,_5 and let this newly labeled tree be the right subtree of the root P,.

From its construction we know that P, is isomorphic to F, and therefore to T,,. Now we define
¥ = (@),82,...,08n-1), where a; = R,, — 2(fu—i+1 — 1) are the Diflerences.

Claim. For each vertex y in T\, if we veqard its lubel in I, as e vector and call it 1, ,,, then we have
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P

Figure 8: Examples of P,
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Or, the 1's in 1, ,, indicale the Differences lo be added to dy,, to gel djn.

Proof. Because of Corollary 2.2, any vertex, its lelt and right child should first appear in three consecutive
T’s. Also notice that for any n, «; in 7 is the differerice between the distasums of all the vertices added to
T; in the construction of Ti4, and their parents. Thus the Differences between the distasums of left child
and parent and that of the right child and the parent should be adjacent in #, and they should follow the
Difference between the distasum of the parent and its parent. This means if our labeling in P, has the
property stated in the claim, it should have and ouly need to have the following properties:

For any vertex p,

1. if p is the root, then it should be labeled by a string of n — 1 zeros, its left child should be labeled

by 1 followed by n — 2 zeros and its right child should be labeled by 01 followed by n — 3 zeros;

2. if p has both left and right children, say, ¢; and ca, then p should be labeled as z...x100z...z, where
the 1 is the last 1 in the label of p. Then ¢, and ¢; should be labeled respectively as z...2110z..x

and z..z101z...1;

3. if p has only left child, then p should be labeled as z...z10 and its left child should be labeled as

z...211;
4. if p has no children, then p should be labeled as z...x1.

Here z's can be 0, 1, or empty string, but are the same for p and its children. Our labeling does
satisfy the above property. This can be easily checked because of the recursive way P, was labeled. Thus
the claim is true. 8]

Notice that if we let @ = (f}, fa,...fn-1), ther by parallel reasoning as the above, j = 1 + (i, @)

So we have another way to get the labeling of T,,.
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