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Abstract

The similarity concept and its database implementation — similarity searching, are overviewed in the con-
text of chemoinformatics.

Similarity is defined in terms of matches/overlap, dissimilarity in terms of mismatches/difference, for
qualitative/quantitative characteristics. Similarity, dissimilarity and composite measures are constructed
from similarity or/and dissimilarity components. Asymmetric measures are constructed by unequal
weighting of dissunilarity components. Whole objects or local regions of them are compared, yielding
global or local similarity. Asymmetric local similarity is obtained by treating the objects in the comparison
unequally, e.g. by ignoring parts of them. Global characteristics provide overall descriptions of objects,
local characteristics provide sufficient locational information for object alignment/superposition to be
effected. Similar objects are likely to have similar properties — similar property principle.

In chemical similarity searching, molecules, fragments of molecules, reactions, mixtures, journal artirles,
etc. are selected as objects of interest. The selection of characteristics and their encoding is illustrated us-
ing the atom pair and topological torsion descriptors, as well as their variants of increased fuzziness. Simi-
larity measure selection is still very much a matter of trial and error. Standard query object specification is
made easier by using query by example, multiple searches using a single query yield a highly informative
hyperlinked screen, and joint queries involve more than one object. Similarity scores illustrate results from
similarity searches and measures of their effectiveness. Areas of application include direct and reverse
property prediction, data mining, virtual screening, diversity analysis, pharmacophore searching, ligand
docking, structure clucidation, pattern matching, and signature analysis.

" Dedicated to the memory of Professor Oscar E. Polansky.



Introduction

Similarity (fuzzy) searching is alternative and complementary (Willett 1998; Willett, Barnard and Downs
1998) to exact searchingt. An illustration:

A similarity search for “Robert Anderson” at “123 Main Street” would produce not only any exact
matches for these search terms but also “Bobby Andersen” at “122 Maine St.” and “Rob Enderson™ at
321 Main Road”. Different variations on the name “Robert” and the street name “Main” are identified as

being possible matches... even sound-alikes such as “Juan” and “John” ("Fraud investigator application")

Similarity searching retrieves objects that are similar to a query, sorted in order of decreasing similarity.
High-ranked objects are likely to have similar properties to the query (‘similar property principle’ (Johnson
and Maggiora 1990), see below), and thus be of interest for property prediction. Pattern matching and
signature analysis are names of similarity searching that originate from other application areas

("Queryplus™):

Industry Sample Query Typical Search Criteria

Drug Discovery Find molecules that have similar

structure (2D and 3D), shape,
properties to known entities

reactivity, molecular weight

Comumercial Images Find images that look like a given

color, shape, texture
query image

Satellite Images

Manufacturing

Financial Services /
Direct Mail

Find specific features within an image
or a set of images

Detect signatures that match known
defects or deviate from specifications

Find customers most similar to target

shape, intensity, texture,
hyperspectral signatures

electrical, vibration, x-ray,
fluorescent signatures

demographic data, risk factors,
purchase behavior, usage patterns

In the next two sections, the basics of the similarity concept and its database implementation — similarity

searching, are presented. Although the approach is quite general, most examples are taken from chemoin-

formatics.

I For a presentation of the full range of seacch methods, see (Kochev, Monev and Bangov 2003) (textbook level) and
the corresponding chapter in (Gasteiger 2003) (advanced level).



Similarity Basics

In general, similarity S, , between two objects .4 and B is esumated by the number of matches or the
overlap in the objects, with respect to one or more of their characteristics {XM} . {X,,} , J=L2,.m.
For identical objects, estimates of similarity S, ; take a maximal value. As a rule-of-thumb, in the mathe-
matical expressions for calculating S5, , (similarity measures), the numerator contains component by com-

ponent multiplication X ,, X ,, or conjunction M (set theory), or the logical operator AND.

Dissimilarity D, 5 between two objects A4 and B is estimated by the number of mismatches or the differ-
ence between the objects, with respect to one or more of their characteristics {XM} . {Xﬂ,} 5 FELRH
For identical objects, the estimates of dissimilarity D, , take a minimal value. Again, as a rule-of-thumb, in
the mathematical expressions for calculating D, , (dissimilarity measures), the numerator contains compo-

nent by component subtraction X, - X 5, or disjunction U (set theory), or the logical operator XOR

(exclusive OR).

Similarity is often used as a general term to encompass either similarity or dissimilarity, or both (see com-
posite measures below and Table 1). The terms proximity and distance are used in statistical software pack-
ages, but have not gained wide acceptance in the chemical literature. Similasity and dissimilarity can in

principle lead to different rankings (see example below).

The denominator, if present in a similarity measure, is just 2 normalizer (Gower 1985); it is the numerator
that is indicative of whether similarity or dissimilarity is being estimated, or both. The characteristics cho-
sen for the description of the compared objects are interchangeably called descriptors, properties, features,
attributes, qualities, observations, measurements, calculations, etc. In the formulations above, ‘matches’
and ‘mismatches’ refer to qualitative characteristics, e.g. binary ones (those which take one of two values:
1, or 0, present or absent, etc.), while the terms overlap and difference refer to quantitative characteristics,
e.g. those whose values can be arranged in order of magnitude along a one-dimensional axis (Sneath and

Sokal 1973) p. 148 (sce also Measurement scales in (Electronic Statistics Textbook)).

Traditionally, similarity comparison is pairwise, although nothing in principle rules out estimates of simi-
larity to be carried out for more than two objects at a ume. Likewise, similarity estimates are traditionally
considered valid only if object alignment is carried out, so that ‘heads’ are not matched to ‘tails”. Thus,
similarity estimates are by default alignment-maximized. However, estimates of similarity for partially aligned
objects could be carried out, if such a need should arise. Indeed, maximal object alignment may be weil-
nigh impossible, as in protein sequence alignment. A third traditional assumption s that similarity is sym-

metric. This assumption is now abandoned, and asymmetric similarity (see below) has been coded into



similarity search engines as a major option.

One of the first papers quantifying similarity in chemistry is that of Sneath in 1966 (Sneath 1966), also co-

author of a definitive textbook on numerical taxonomy (Sneath and Sokal 1973).

Measures

Case of gualitative characteristics

Following Bradshaw (Bradshaw 2001), for two objects A and B, a is the number of features (character-
istics) presentin A and absent in B, & 1s the number of features absent in A and presentin B, ¢ is
the number of features common to both obiects and 4 is the number of features absent from both ob-
jects. Thus, ¢ and d measure the (“present” and “absent”) matches, i.e. similarity; while @ and b meas-
ure the mismatches, i.e. dissimilarity. The total number of features is a + b +¢+d = n . The total number
of bits set on A is (a+¢), and the total number of bits set on B is (& +¢). These totals form the basis of
an alternative notation that uses a instead of (¢+¢), and b instead of (4+¢) (Willetr, Barnard and
Downs 1998) p. 986. This notation, however, lumps together similarity and dissimilarity ‘components’ —a
disadvantage when interpreting a similarity measure.

Constructing a similarity measure from the above ‘components’ is intuitive, e.g. all matches (¢ + &) relative
to 41l possibilides, i.e. matches plus mismatches (c+d)+(a+b), yields (¢ +d)/(a+b+c+d), called the
simple matching coefficientt (Sneath and Sokal 1973) p.132, and equal weight is given to matches and
mismatches. When absence of a feature in both objects is deemed to convey no information, then 4
should not occur in a similarity measure (Gower 1985), Omitting 4 from the above similarity measure,
one obtains the Tanimoto (alias Jaccard) similarity measure ¢/(a + b+ ¢) . Tt is monotonic with that of Dice
(alias Sorensen, Czekanowski) r/O.S[(a+r)+(b+{)], which uses an ‘arithmetic mean’ normalizer, and
gives double weight to the ‘present” matches. Russell/Rao ¢f(a+ &+ ¢ +4d) adds the matching absences to

the normalizer in Tanimoto; Rogers/Tanimoto (c+d)/(2a+2b+c+d) gives double weight to mus-

matches, cosine (Sneath and Sokal 1973) p.172 (alias Ochiag) 15 c/d(;r+r)(b+¢') , and uses a ‘geometric

1 .
mean’ normalizer; Baroni-Urbani/Buser is Jc? +e \Jg +a+b+c); Kulczynski-2 is — ke St .
Y 2\a+c b+c

etc.

To construct dissimilarity measures, one uses mismatches: (2-+54) is the Hamming (Manhattan, taxi-cab,

aty-block) distance (see below), \,‘(a—} ) is Euchdean distance, (a+&)/(a+b+c) is Soergel distance,

t Normulization of similarity measuees yields similanty indices or cocefficients, see e.g. (Cioslowski 1998)



complementary for binary characteristies to Tanimoto: 1—[c/(a +b +£')] . Both Hamming and Euclidean
distances are not normalized, increasing with the number of characteristics used; to correct for this, mean

Hamming is (a+#&)/(a+b+¢+d), and this is identical to squared mean Euclidean distance. Pattern dif-
ference is ab/(u +h+e+d) | vadance is (a+b)/4(a+b+c+d), Size’ is (a—b) /(a +b+c+d), ‘shape’
is (@ +b)/(a+btctd)—[(a-b)/(a+b+c+d)| Sncath and Sokal 1973)p. 170 and (SPSS 2001).

Using just similarity or dissimilarity in a similarity measure may be misleading, as in the following case
(James, Weininger and Delany 2000): “Consider the following two 1024-bit fingerprints. F1 and F2 cach
have 407 bits set, 402 of which are common to both. F3 and F4 each have 5 bits set, none of which are
common. In both cases, the (squared mean) Euclidean distance between the fingerprints is 10/1024, or
0.0098, yet clearly the first pair of fingerprints are quite similar whercas the second pair have nothing in
common”. The similarity ‘components” in this comparison are missing! Though rarely used in similarity
searches so far, composite measures using both similarity and dissimilarity components exist: Hamann is

(c+d—a=b)f(a+b+c+d), Yule is (ed — ab){(cd + ab), Pearson is

(ed —ab)/,j(a +e)(b+e)(a+d)(b+d), dispersion is (ed —a!:)/(:H- b+c+d), McConnaughey is
( —ab)/(a +e)(b+¢), Stles is logm(nﬂm’ ~ab| - n/2)3/(a +e)(b+e)a+d)b+ d)) (Holliday, Hu and

Willett 2002). Note that the two terms (in the numerator) should have opposite “signs” to avoid contra-
dicting interpretation of the whole. A simple product of (1-Tanimoto) and squared Euclidean distance is
used by Dixon (Dixon and Koehler 1999). The Grotch metric (Delaney, Hallowell and Warren 1985) is

(a+86)—pe, where p weights the relative contribution of the similarity component.

Asymmetry in a similarity measure is the result of asymmetrical weighting of a dissimilarity component —
multiplication is commutative by definition, difference is not. Weighting 4 and & unequally , onc obtains
asymmetric similarity measures, e.g. when @ # [ in the Tversky similarity measure ¢f(cta +Bb + ), where @
and B are user-defined constants (Bradshaw 1997; Willett, Barnard and Downs 1998). Tversky can be
regarded as a generalization of the Tanimoto and Dice similarity measures; like them, it does not consider
the “absencc” matches 4. A particular case is ¢/(a + ¢), which measures the number of common features
relative to all the features present in A4, and gives zero weight to #1. The composite measure Tversky
contrast model B¢ —cta — Bb (James, Weininger and Delany 2000) can be considered as allowing asymme-
wy in the Grotch metric. Taking the max or min is another way of weighting unequally  and b in a simy-

larity measure, e.g. in the Simpson coefficient r/nun[(a +o) (b + :)] (Bradshaw 2001).

4 For an interpretation in the case of structural features, see secton Objects
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Case of guantitative characteristics

Overlap is usually expressed mathematically with component by component multiplication X ,X ; fol-

lowed by summation (integration). In the limit case of binary characteristics, Z XX pis e, EXF!XF,

J=i Al
is (a+c), ZXJ,X’, is (b+ ¢), casily verified by substituting 0’s and 1’s in these expressions. d does not
e

figure in them, and there seems to be no way to estimate ‘empty” overlap within this mathematical appara-

tus. The summation form of some similarity measures follow. The Tanimoto coefficient is

ixﬂxﬁ/[ixﬂx’, +5:x,,x,,-§':xj,,x,,]_ Dice is
=t =

sl J=1
ZZXMX/,/[ZX’IXK + ZXJ,XIB], cosine is ny,x,,/ DX X2 X5 X , Pearson is
it i=t 7= J=! 7= =t

obtained from cosine by replacing X, with X, - )?r, ,and X, with X 4~ }_(lﬂ, respectively, where

= fuik . o
X4 is the mean —Z X ,, - Spearman is Pearson where the values of the characteristics have been re-
n
=

placed by their ranks (Electronic Statistics Textbook).

Replacing summation with integration, one obtains the integration form of the above-described similarity
measures. Using different characteristics to describe the compared objects, one obtains ‘different’ similar-

ity measures: the Carbo similarity measure (Carbo, Arnau and Leyda 1980) s
Sog= HPA(I:)Q(r,r')p,,(r')drdr’ , where p (r) and p,(r') are the electron density functions (see section
Characteristics) of quantum objects 4 and B, weighted by a positive definite operator X(r,r'), chosen
cg. as the Dirac function 8(r - '), the Coulomb operator |r - r'I.' , ete. (CarboDorca and Besalu 1998).
The resulting similarity measures are “overlap-like” S, , = jp,,(r)p,(r)z‘r, “Coulomb-like”, ete. The
Carbo similarity coefficient is obtained after geometric mean normalization S,M/ 54458 (cosine), while
the Hodgkin-Richards (Richards and Hodgkin 1988) similarity coefficient uses arithmetic mean normaliza-
tion S,,_,/O.S(.S'V,‘.,, +.§'M) (Dice). The Cioslowski similarity measure NOEL (Cioslowski and Fleisch-
mann 1991) §,, = HF:,(r,r')rn(r,[')dra&' uses reduced first-order density matrices (one-matrices)

(Szabo and Ostlund 1989; Committee 1995) rather than density functions to characterize 1 and B. No

§ Some authors give a broader definiton of the similarity concept by including the charactensncs and
weighting scheme in 11, sce ¢.g. (Willett, Bamard and Downs 1998) p. 985.



normalization is necessary, since NOEL has a direct interpretation — Number of Overlapping ELectrons,
at HF level of theory (Cioslowski and Surjan 1992). An atomic similarity index in integration form

(Cioslowski and Nanayakkara 1993) is presented as an example of /oca/ similarity in section Objects.

Difference between two objects is usually expressed with component by component subtraction
Xoi= X/lh followed by summation (integration). The mathematical term for this is distance in n-
dimensional descriptor space (Sneath and Sckal 1973) p. 121, and is frequently used as a synonym of dis-
similarity. Distances are asymmetric unless special care is taken, e.g. by taking the absolute value of the
difference, the square of the distance, an arithmetic mean (see Kulczynski 2), a geometric mean, etc. Dis-
tances are metric if they satisfy a number of mathematical conditions (Gower 1985) (symmetry is one of
them). These were previously considered all-important for similarity measures (see e.g. (Santini and Jain

1999), but now tend to be relaxed in favor of pragmatic considerations such as ease of computation and

general usefulness.

In the limit cases of binary characteristics, Z[XM - Xﬂ!’ yields (a+b), easily verified by substituting 0’s
jt
and 1’s in these expressions. The summation form of some dissimilarity measures follow: mean Hamming

7 . 3 4 4 . 1 2 ;
distance is L E !X 4~ X 5| » squared mean Euclidean distance is — E (X u—X J,,) , power distance
A jat n e

yr
. ’
(Electronic Statistics Textbook) is [Z’X =X ;ﬂ| ] , where p and r are user-defined, Soergel distance is

J=l
Z|X“ . XJ“I/_Z‘ max(X,.,, Xﬁ,). Chebychev distance is nj]}\xlXH - Xf'l (Electronic Statistics Textbook).
”~ b

Mahalanobis distance ("Mahalanobis Metric") is a generalization of standardized Euclidean distance, scal-
ing the coordirate axes (characteristics) and correcting for correlation between them. Hausdorff distance
("Hausdorff distance™) measures distance between two sets: maximum distance of a set to the nearest
point in the other set. Levenshtein (edit) distance is the smallest number of insertions, deletions and sub-
sututions required to change one string or tree into another ("Levenshtein distance™). Very many distances
have been defined and used as dissimilazity measures, see e.g. Euclidean distance in quantum chemistry

(Fratev, Polansky, Mchlhorn and Monev 1979), form and shape distance (Kiein and Babic 1997).
The integradon form of Euclidean distar:ce as introduced in quantum chemistry by Carbo (Carbo and

vz
Domingo 1987) and Cioslowski (Cioslowski 1991) is eg. D,,_,,:(ml",,rr,r')—I',,(r,r')lzdrdr') ,and is

calculatedas D, =(S5, ,+35,,—-25, w,usin the already defined quantities § , , above.
A8 At Ipy 1.8 8 y q AR



Exercises

Calculate the Tanimoto similarities and Euclidean distances for the two pairs F1/F2 and F3/F4 in

the example above and compare them.

Do the same for three objects represented by the following 10 bit binary strings. Interpret your
results (Bradshaw 1997). Choose one object as a query, and rank the other two in order of de-
creasing similarity.

Object 1 1000110010

Object2 0000100110

Objectd 0000000100

Verify that ZX;A XORX ; is (a+5) inlogical representation. Hint: The logical XOR (Exclu-

J=l
sive OR) operation compares 2 bits and if exactly one of them is "1" (i.e., if they are different val-

ues), then the result is "1"; otherwise (if the bits are the same), the result is "0" ("Logical opera-

tons").

Verify that » X . ANDX , is ¢ in logical representation. No hints!
A B B P!

=

Verify that Zmin(XM,XI,) is ¢, where min is the standard minimum function.
j=

Verify that the binary form of Pearson, as given, is a limit case of the summation form. Hint:

n=a+b+c+d.

Objects

Any two objects of interest are legitimate candidates for quantification of their similarity with respect to a

set of their characteristics. Objects of interest to a chemist include molecules, molecular substructures,

reactions, mixtures, spectra, chromatograms, x-ray diffraction images, patents, journal articles, polymers,

atoms, functional groups, complex chemical systems, molecular electrostatic fields, ete. An example from

quantum chemistry (Cioslowski and Challacombe 1991) p. 82: Let A4 and B be two (not necessanly dif-

ferent) systems. .4 and B can be two different molecules, the same molecule described within two differ-

ent quantum-chemical approximations, two different electronic states of the same molecule, or the same

molecule with two different geometries.



Object alignment/. superposition

If the matches/mismatches, ovetlap, or difference depend on the mutual ‘otientation” of the compared
objects A4 and B, an optimization procedure is required to locate an object alignment/superposition
(Robinson, Lyne and Richards 1999) that maximizes similarity. Depending on the aim of the investigator,
the characteristics used, the optimization procedure, etc., more than one alignment may be identified —
indeed exploration of similarity space may be necessary to find a set of ‘best possible alignments’ (Mestres,
Rohrer and Maggiora 1997). For objects that are too dissimilar, the assumption that the whole of one
object can be aligned with the whole of another object becomes invalid — /ora/ alignment (Robinson, Lyne

and Richards 2000) may be appropriate.

Globalf local similarity

Depending on the interest of the investigator, ! regions of objects can be compared, yielding tocal (or
sub-) similarity (Willett, Barnard and Downs 1998) p. 984. Let the objects of interest /4 and B be speci-
fied as local regions of objects X andY, respectively, and let the descriptors used™ represent the com-
plete objects. Local similarity can be obtained by counting or summation (Mestres, Rohrer and Maggiora
1997; Amat, Besalu, Carbo-Dorca and Ponec 2001)/integration(Mezey 1999) in just the local regions of
the complete objects. Again an example from quantum chemistry (Cioslowski and Nanayakkara 1993):
[y and T, are the reduced first-order density matrices {(one-matrices) describing (molecules) X and Y,
and we are intetested in the similarity between (atoms) 4 and B. The diagonal elements of the continuous
representation of the one-matrices are the electron densities T (r,£)=p,(r), I',.(r,r)=p,-(r) of X and
Y (Szabo and Ostlund 1989) p. 253. The similarity between the complete objects X andY', as we have
seen in section Measures, can be estimated by the ‘overlap’ in the electron densities or by the number of
overlapping electrons. Integration of the molecular descriptors (molecular clectron densides) in just the
sub-domains 2, and ,(e.g. atomic basins), and in their common space Q , =Q , N Q, (obtained by
local alignment), allows quantification of the similarity between the local regions .4 and B e.g. atoms in
molecules. The product of the number of electrons from each atom in the common space is a measure of
the overlap of the electron densities of the two atoms. Each contribution is normalized by the total num-

ber of electrons in that atom (calculated as a local region of the respective molecule)
[L p_\»(r)dr/L px(r)rfr][L p,-(r}:’r/L p,.(r)n’t:l(Cioslowski and Nanayakkara 1993). This symmet-

ric index of atomic similarity depends not only on the spatial overlap of the two atoms (size and shape of

the atomic basins), but also on how strongly they are clectronically populated in their common space.

**The descriptors used should be 'local’, see next section.
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Global similarity is appropriate when the need is to identify complete objects similar to the query object.
In global similarity, information about which local regions of the objects are similar is lost as a result of
the match counting or summation (integration). Global similarity, however, may reflect the dominance of

some local region.

Symmetric local similarity is appropriate when the need is to identify objects containing local regions simi-

lar to local regions in the query.

Another type of local similarity is obtained by using an asymmetric (directional) similarity measure, 1.e. by
treating the two objects in the similarity comparison on an unequal footing. Let the characteristics used be
structural fragments, A be the query object, and B - a database object. The values of the similarity meas-
ure ¢f(a+¢) (see section Measures) do not depend on & - the fragments present in B and absent in A
are ignored. Thus the highest ranking database objects B retrieved in a similarity search will be superstruc-
tures of 4. Usingc/(b + ), the highest ranking database objects B retrieved in a similarity search will be
substructures of A (Willett 1998) p. 2751. By ignoring fragments of B and of 1, respectively, in the
above two cases, similar local regions are identified.

Asymmetric local similarity is appropriate when the need is to identify i) objects containing local regions

similar to the complete query or ii) complete objects similar to a local region of the query.

Exercises:
¢ Interpret the atomic similarity index in terms of ¢/(a +¢) and ¢/(b + ¢), and the cosine index.

e Interpret intermediate values of ¢ and B in the Tversky similarity measure when structural

fragments are used.

Characteristics

Any set of characteristics can be used to describe the compared objects. However, a similarity estimate is
meaningless, unless the characteristics used contain in a direct or indirect way the information that is

sought. Using different characteristics one obtains different estimates of similarity.
Globalf local characteristics

Object characteristics can be roughly classified as global and local, with the latter providing sufficient loca-
uonal information for object alignment/superposition to be effected (Downs and Willett 1996). Local
similarity can only be estimated when such charactenistics are used. Global characteristics are at the other
extreme, providing overall descriptions of objects. Obviously, intermediate types of characteristics exist,

and even ones with ‘variable resolution” (Crippen 1999).



Examples of global characteristics are the atom pair (ap) (Carhart, Smith and Venkataraghavan 1985) and
the topological torsion (tt) (Nilakantan, Bauman, Dixon and Venkataraghavan 1987). Atom pairs are de-

fined as substructures of the form AT, - AT, ~(distance), where (distance) is the distance in bonds along

the shortest path between an atom of type AT, and an atom of type AT, (a slightly modernized defini-

ton is presented following (Tull, Fluder, Singh, Nachbar, Kearsley and Sheridan 2001)). Atom types en-
code the species of atom, the number of non-hydrogen atoms attached to it, and the number of incident
7 -bonds. For instance, n2101005” is an atom pair of a nitrogen with 2 non-hydrogen neighbors and one
n -bond, five bonds away from an oxygen with one neighbor and no m-bonds. Topological torsions are
of the form AT,—ATI- AT, — AT,, where 4, j, k, and | are consecutively bonded distinct atoms and the

atom types are as deseribed above. All of the ap’s and/or ts in a molecule are counted to form a fre-

quency vector.

Figure 1 shows an example of a molecule parsed into atom pairs and topological torsions, and their fuzz-

ier counterparts binding pairs (bp) and binding torsions (bt) (Kearsley, Sallamack, Fluder, Andose, Mosley
and Sheridan 1996) (described in the next section).

Atom pairs are descriptors which can be applied straightforwardly, no need for descriptor selection
and/or reduction, no adjustable parameters, no ad hoc assumptions about what substructures are impor-
tant. Long-range relationships between atoms are captured, and the descriptors are generalizable to 3D
and properties (see next section). They are easily perceived, compact in representation, usable for large
numbers of objects and for large objects (in chemistry). As defined, atom pairs do not encode stereo-
chemical or conformational information. They can conveniently be computed from a constitutional repre-
sentation of chemical structure e.g. a connection table. 3-methyl-1/{-pyridin-4-one shown in Figure 1 has
8 non-hydrogen atoms and thus 28 (n(n - 1)/2 for #=8) atom pairs, 23 of which are distinct. An indi-
vidual ap does not convey much structural information, but the set of ap’s of a molecule captures fairly
well structurzl information. The ap’s are general enough that a significant number may be found in com-
mon among diverse structures yet specific enough that in the aggregate they can discriminate even closely
related topological isomers from one another. For example, among about 170000 structures in a public
database of structures, fewer than 340 structures share identical sets of atom pairs with other, topologi-
cally distinct structures. Most of these correspondences are reiated to a pair of isomers (1,4- and 15-
disubstituted naphthalene) which cannot be distinguished by their set of ap’s (Carhart, Smith and Venkata-
raghavan 1985).
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Figure 1. Sample molecule parsed into descriptors: atom pairs, topological torsions, binding pairs, binding

torsions. Nambering at atoms indicates binding property atom type.

Computing the set of atom pairs from the connection table of a structure requires an algorithm for finding

the length of the shortest path between each pair of non-hydrogen atoms in the structure. The properties

of atom type are casily extracted {rom the topological description of the structure. The number of incident

7 -bonds is 1 (or aromatic compounds. Tautomer bonds are reduced to a specific pattern of double and

single bonds, with common cases such as carboxylic acids, amides, and ureas handled in a self-consistent

manner. Dative bonds, such as N-O in an N-oxide, are treated as double bonds. Further details of the

cncoding of the atom pair descriptor can be found in the original paper (Carhart, Smith and Venkata-
raghavan 1985).



20

Exercise

Enumerate the unique ap’s contained in the molecules acetone and isobutylene, and estimate their
stmilarity using the Dice index. ap 1 occurs once in both molecules, and ap 4 occurs twice in both
molecules, i.e. ¢ = (1+2) = 3. There are 6 2p’s in total in acetone (a + ) = 6, and there are 6 ap’s

in total in isobutylene (b+c) = 6. The similarity score is 3/0.5(6+6)=0.5.

descriptor average
representing e.g. a joint
query, a centroid,

unique ap’s or a mixture of the two
o molecules at left (see
acetone isobutylene  text in next section)
1 cl0c1002 L 1 1
2 cl0o1102 2 0 1
3 cl0c1102 0 2 1
4 311001 2 2 2
5 3101101 1 0 0.5
6 c31cl101 0 1 05

The topological torsion is another descriptor developed at Lederle laboratories. The rationale for the tt
descriptor is that the torsion angle is the minimal structural unit in terms of which the conformation of a
molecule can be complerely described. The 3D structure of a molecule can be completely built by using a

series of torsions as basic building blocks. tt is the topological analogue of the totsion.

Encoding the tt’s in a molecule is straightforward: starting from a connectivity table, the algorithm finds
all the possible t’s by looping first over all the atoms and then over three successive levels of branching.

Checks are made that the atoms in the tt quartet are distinct and that the same tt is not counted twice in

opposite directions.

Unlike the atom pair, tt is not a long-range descriptor. A small change in one part of a large molecule does
not affect the tt's in a distant part of the molccule. In contrast, a change of a single atom in a molecule

alters all atom pairs involving that atom. Thus the tt complements rather than replaces the atom pair de-

scriptor.

The performance of the atom pair and topological torsion descriptors in similarity searching is compared

in secuon Similarity scores.
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Examples of /loca/ descriptors are quantum-mechanical reduced first-order density matrices (one-matrices)

and electron density functions, as we have already seen. The complete information for an N-electron sys-
tem is contained in the density matrix operator '™ whose coordinate representation is
By oo B it ) 5 Wi iy Y (x,.-., 15 ), where ¥ is the normalized N-clectron state of the
system in coordinate representation, and r. are the space-spin coordinates of the i-th electron. Integrating
over the coordinates of N —1 electrons, one obtains the one-particle reduced density matrix operator I,
whose coordinate representation is I'(r,,t/) =N Idrz---drN‘P(rl,rl,...,rN Y8, 1,1y ) - The diagonal
elements I'(r,r) = p(r) are called electron density functions because they give the probability of finding an
electron at space-spin coordinate r. The momentum-space representation of the diagonal elements of T’
has also been used as a local descriptor (Cooper and Allan 1989). Two-particle reduced density matrices

(obtained after integration over the coordinates of N —2 electrons), and their diagonal elements, are de-

scriptors with even higher information content (Ponec and Strnad 1990).

As with all local descriptors, a major stumbling block for their widespread use is the high computational
cost of object alignment. Workarounds include the use of lower-resolution local descriptors for the initial

stages of object alignment.

Similar property principle

Similar objects are likely to have similar properties (Johnson and Maggiora 1990). At the basis of this as-
sumption is the so-called Principle of Continuity “Changes in nature are gradual”, which can be traced to
Atistotle’s “Natura non facet saltus”. A more practical formulation is “Systems which differ little in their
mathematical properties will differ little in their physical, chemical and biological properties” (Trinajstic,
Klein and Randic 1986). The similar property principle is inapplicable for cases where abrupt changes

ocenr e.g. singularities and bifurcation phenomena.

The expectation that similar objects will frequently show similar properties has a statistical interpretation,
eg. in medicinal chemistry, the density of actives in a set of molecules that are structurally similar to an

active lead will exceed the density of actives in a set of randomly chosen molecules (Forvath and Jeande-
nans 2000).
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Similarity Searching

Sumilarity searching is the database implementation of the similarity concept. One of the first reviews on
chemical similarity searching is in the mid 1980-s (Willett 1987); comprehensive reviews include (Downs

and Willett 1996; Willett 1998; Willett, Barnard and Downs 1998).

A do-it-yourself (IDIY) approach to similarity searching would involve selection of the objects to use and
assembling, or acquiring access to, an appropriate database; selection of the characteristics to describe the
objects, the way to encode the characteristics and processing of the encoded data to allow searching; selec-
tion of the similarity measures for use and cncoding them; developing an algorithm for searching and
building/deploying a search engine; building a graphical user interface including possibly Internct-based
access; testing of the similarity search implementation by specifying query objects, similarity measures and
similarity cutoff values as well as possibly a subset of characteristics to use, and interpreting the vahdity of
the results; using the similarity search application in areas such as property prediction, pattern matching

and signature analysis. Some of these steps ate overviewed next, in the context of chemoinformatics.

Object selection

The most common obiects of interest to a chemist are mo/anles. One source of drug-like compounds is the
MDIL. Drug Data Report (MDDR) (MDDR 2002) a licensed database compiled from the patent literature
and conference proceedings. Contains about 115 000 compounds, coverage starting from 1988. A small
percentage of molecules in the MDDR are very large (e.g. peptides) and some are very small. If one wants
to consider drug-sized molecules, only those molecules within the range of 7-50 non-hydrogen atoms
could be retained. Molecules in the MIDDR ate assigned a “therapeutic category” by the vendor. Some
therapeutic categories (e.g. “antihypertensive™) contain molecules that work by different mechanisms.
There are 647 therapeutic categories. A molecule may be in more than one therapeutic category, and some
therapeutic categories are neatly synonymous (Sheridan 2002). MDL Drug Data Report-3D is also avail-
abie. A companson of eight large chemical databases is given in (Vo‘igt, Bienfait, Wang and Nicklaus

2001). Considerations for compound acquisition can be found in (Rhodes, Willett, Dunbar and Humblet
2000).

A mind-cpening example of a_fragment-vased scarch space is given in (Rarey and Stahl 2001): “the search
space could either be an cxplicitly enumerated compound database, the closed form of a combinatonial
library, or a more generally defined "chemistry space”. Under chemistry space, we understand a large set
of diverse (ragments icgether with generic definitions of how the fragments can be combined to mole-
cules... a chemistry space created by shredding the World Deug Index (World Drug Index 2001) into
small fragments. The space contains about 17000 fragments which can be connected to each other via 12

different ink types. The space is theoretically infinite. Limited 1o reasonably sized molecules (consisting of
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less than 6 fragments), it still contains about 2.15" molecules. Depending on the size of the query mole-
cule, this space can be searched in between 2 and 20 minutes on a single CPU workstaton.” Searching this
virtual search space can be done using the feature tree descriptor which represents a molecule by its frag-

ments (Rarey and Dixon 1998).

Reactions can be considered as composite systems containing reacting and product molecules, as well as

reaction sites, The familiar atom pair can be used as a descriptor (Grethe and Moock 1990).

Joumal articles can be described by the citations contained in them. The assumption is that articles whose
reference lists include some of the same sources have a subject relationship, regardless of whether their
titles, abstracts, or keywords contain the same terms. The number of matching citations can be used as a
similarity measure. One can specify which citations in the query article to use as descriptors (those that
seem relevant to the aims of the investigator); if not, by default, all the citations are used in the similarity
search. Articles that share the largest number of citations with the query article are listed first (ISI). Sitni-
larity searching via a citation index can be combined with a conventonal reaction database, 1o obtain a
reaction simtlarity and retrieval tool. Reactions are especially suitable for citation-based similarity searching
because citations are “based on all important features of the reaction, not just the molecular structures or

bonds broken and made in the reaction” (Garfield 2002).

Mixtures containing up to several thousand distinct chemical entities are often synthesized and tested in
mix-and-split combinatorial chemistry. The descriptor representation of a mixture may be approximated
as the descriptor average of its individual component molecules, using e.g. atom pair and topologjcal tor-
sion descriptors (Sheridan 2000) (see example for acetone and isobutylene).

Exercise

¢  Define a search space for materials suitable for nonlinear optics, a possible project in materials

science. Bear in mind that materials with appropriate bulk properties are sought. Send your sug-

gestions to the author, who is currently investigating the viability of such a project ©.

Descriptor selection and encoding

The atom pair and topological torsion descriptors are selected for ilustrative purposes in the similarity
searching context. A descriptor generator (Kearsley, Sallamack, Fluder, Andose, Mosley and Sheridan
1996) is used to generate ap and tt descriptors from the connection table of each molecule in the chemical
database (e.g. MIDDR). A first pass through the databasc is performed to create a catalog of unique de-
scriptors (~10 200 unique ap’s and ~5 900 unique tt’s) and another catalog of each molecule name. Then,
a sccond pass creates a list of the frequency of each descriptor found in each molecule (Full, Singh,

Nachbar, Sheridan, Kearsley and Fluder 2001).
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A limitation of the atom pair descriptor is its topological nature — the 3D shape of a structure is not cap-
wred. A 3D analogue of ap - the atom pair geometric ag - is defined by changing the definition of (dis-
tance) from through-bond (topological) to through-space (geometric) distance (Sheridan, Miller, Under-
wood and Kearsley 1996). Since geometric distance is continuous, it is partitioned into discreet “bins”.
Distance is divided into 30 bins starting at 1A and ending at 75.3. The interval between the first and sec-
ond bin starts at 0.5 and thereafter the interval increases. The centers of the bins are <1.0, 1.5, 2.1, 2.7,
3.3, 4.1, 4.9, etc. Distances are “fuzzy” in that a particular pair of atoms contributes to two adjacent bins
according to how close it is to the bin centers. This is done so that, for instance, a distance of 4.7 would
be perceived as similar to 5.0, even though the distances might fall in different bins. For example, a nitro-
gen with 3 non-hydrogen neighbors and zero 7 -bonds and a carbonyl oxygen at a geometric distance of
4.7 generate 0.25 of ag n3001106 (bin 6) and 0.75 of ag 3001107 (bin 7). The number of times a given
descriptor occurs in a molecule, ie. its count, may not be an integer, but the sum of the counts over all
descriptors is still #(n-1)/2. The ag’s for the conformations in a 3D database are generated just like the

ap’s for the chemical structure diagrams in a 2D database.

Excrcise:

¢ Obrain the ag’s for the molecule in Figure 1. Hint: Copy/paste “3-methyl-1 H-pyridin-4-one” into
a 2D software package (e.g. Chemdraw (Chemoffice Ulira 2003)); copy/paste the obtained
chemuical structure diagram into a 3D software package (e.g. Chem3D (Chemoffice Ultra 2003))
io obtain 2 3D conformation; select an atom and point to a second atom to obtain the intera-

tomic distance.

A limitadon of the ap, tt and ag descriptors is the specificity of the atom typing, e.g. benzoic acid and
phenyltetrazole would not be perceived as very similar, even though carboxylates and tetrazoles are both

anions at physiological pH.

Ho H
benzoic acid phenyltetrazole

A fuzzier atom type participating in these descriptors has been defined that is pharmacologically relevant -
physiochemical type at neac-neuteal pll (Kearsley, Sallamack, Fluder, Andose, Mosley and Shendan 1996),
one of seven binding prope:ty clssess 1= cation; 2 = anion; 3 = neutral hydrogen-bond donor;

4 = neutral H-bond acceptor; 5 = polar atom (atoms which are both denors and acceptors, e.g. hydroxy
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oxygen or either donor or acceptor via tautomerization, e.g. the nitrogens of imidazole); 6 = hydrophobe;
7 = other (nonpolar atoms in a polar environment or polar atoms that cannot accept or donate H-bonds).
Figure 1 shows an example of a typed molecule, parsed into binding pair (bp) and binding torsion (bt)

descriptors (bg requires a 3D conformation). An automated method to assign these types has been de-
scribed.

The physiochemical atom type, however, is too fuzzy an atomic descriptor for the purpose of identifying
commen substructurestt (symmetric local similarity based on atoms and topological distances as descrip-
tors). In this case, atom type has been defined as a string containing chemical element (all halogens equiva-
lenced to the “element” Hal), number of incident n-bonds, and physiochemical type (Sheridan and Miller
1998).

Two other atomic properties have been used in the definition of atom type, thereby increasing its fuzzi-
ness relative to that in the ap and tt descriptors — atomic log P contabution (yielding hydrophobic pairs
hp’s and torsions ht’s) and partial atomic charges (charge pairs cp’s and totsions ct’s) (Kearsley, Sallamack,
Fluder, Andose, Mosley and Sheridan 1996). Both properties take continuous values, so a set of 7 equidis-
tant and overlapping bins is used to represent ranges from -0.50 or below to 0.50 or above. Each particu-

lar value is binned fuzzily# by getting assigned to two adjacent bins, as a result of the 50% overlap of the

bins.

Increasing the fuzziness of object description reduces the number of descriptors used and broadens the
scope of a similarity search. At the same time, increasing fuzziness may reduce the discriminatory power
of descriptors to unacceptable levels. Thus, it is desirable to be able to control the degree of fuzziness of

descriptors.

Several approaches to the estimation of descriptor fuzziness have been proposed {Kearsley, Sallamack,
Fluder, Andose, Mosley and Sheridan 1996). For a single object, the ratio R = toral number of descrip-
tors/number of unique descriptors can be regarded as a measure of fuzziness of a descrptor, e.g.
R =28/23 = 1.22 for the ap descriptor in the molecule in Figure 1. For a population of objects, 2 median
of R can be taken over a large sample of the objects. A sccond approach is to estimate how simular any
two objects are likely to be — the median similarity for a large sample of pairs of objects can be regarded as

an estimate of the fuzziness of the used descriptor. A standard object/sample of objects should be used,

for comparisons to be valid.

1 According to this definition of (2D) common substructures (Sheridan and Miller 1998), corresponding atoms in
A and B that are local regions of X and Y, respectively, must have the same atom type, and the 1opological
distances between the atoms in 41 must be the same as the distances between the corresponding atoms m B Only
non-hydrogen atoms are considered. Substructures (cliques) ~1 and B may be discontnuous.

# For another example of fuzzy binning sce (Chen, Rusinko, Tropsha and Young 1999).
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For 35635 molecules from the World Drug Index (World Drug Index 2001), a median of R s ap 2.17, bp
4.68, hp 5.43, cp 6.20, tr 1.68, bt 3.75, ht 4.26, ct 4.56. The median pairwise similarity for 10000 randomly
selected pairs of compounds from the same source is ap 0.15, bp 0.36, hp 0.39, cp 0.43, tt 0.04, bt 0.26, ht
031, ct 0.35. Both approaches indicate that the fuzziness of the newly defined descriptors is indeed in-
creased, and in the following order original << binding property < hydrophobic < charge. Torsions are
always less fuzzy than the corresponding pairs tr < ap, bt < bp, ht < hp, ct < cp. The least fuzzy descrip-

tor is tt.

A general approach to increasing the fuzziness of descriptors has recently been proposed (Hull, Singh,
Nachbar, Sheridan, Kearsley and Fluder 2001). Latent semantic structure indexing (LaSSI) employs the
singular value decomposition (SVD) technique frem linear algebra to obtain a reduced number of corre-
lated descriptors. By varying the number of singular values (the choice of k), the user can control the level

of fuzziness of a similarity search: larger values of k producc better approximations of the original descrip-

tor space than smaller values.

Similarity measure selection

In general, different sumilarity measures yield different rankings, except when they are monotonic. Im-
proved results are obtained by using “data fusion” methods to combine the rankings resulting from differ-
et coefficients (Gillet, Holliday, Hu, Khatib and Willett 2002). According to Skvortsova (Skvortsova,
Baskin, Stankevich, Palyulin and Zefirov 1998), for each study a similarity measure must be fitted, using a
training set of objects. Composite measures may need to be optimized, as the Grotch metric and Tversky

contrast model.

Empirically, the Dice coefficient has worked better than cosine similarity in retrieving actives (Hull,
Fluder, Singh, Nachbar, Kearsley and Sheridan 2001) and is the standard choice for use with the ap and tt
descriptors. For any given probe, Dice and Tanimoto give identical ranks ~ they are monotonic, so Dice,

the classical choice of Carhart, is kept,

For the geometric atom pair descriptors, the summation form of the Dice coefficient is used, rather than

the binary form.

Although the ap and tt descriptors are also used as original descriptors in LaSSi, the cosine similanty index
is employed in this technique because “the coefficients on the new descrptors are floating point numbers
and no longer represent frequencies”(Singh, Sheridan, Fluder and Hull 2001). There is no data in the it-

erature for the use of Dice with LaSSi.

Asymmetric similarity measures allow fuzzy super- and sub-strucrure searching. A superstructure search is
defined as: look for structutes containing given query. A substructure search is defined as: look for struc-

tures embedded with given query (James, Waninger and Delany 2000). In both cases asymmetric /focal
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similarity is estimated. A fuzzy superstructure search implementation that uses as a similarity measure the
ratio of the number of bonds in the maximum common structure to the number of bonds in the query

of(a+¢), is given in (Hagadone 1992).

Query object specification

The user either enters, or copies, a query object at search time, using the graphical user interface. An ob-
ject may be selected from existing objects in the database, or a previously found object may be specified

by referencing a file by pathname or URL.

Query by Example (QBE) ("Query by example - the Viper Project”) is a method of query creation that
allows the user to search for objects based on an example in the form of selected objects, or a list of
names of objects. The QBE parser performs an analysis and formulates a query to submit to the search
engine. QBE can be thought of as a "fill-in-the blanks" method of query creation. It is easier to learn than
formal query languages, such as the standard Structured Query Language (SQL), while stll enabling

powerful scarches. Results from a QBE may be more variable than those from a formal query entry.

Multiple searches can be carried out using a single query. The results are presented in a single highly infor-
mative screen containing hyperlinks. Specifying a single journal article as a query object, for example, one
gets similar articles retrieved and ranked according to full-text word- and citation-based measures (citation
and word matches), with the option to see just the first 3 highest-ranking ones or all; the citations them-
selves are also similar objects (subject matter match), and are presented sorted by decreasing similarity;
documents on the same web site are given (site match); the home pages of the authors are given (contain-
ing author-matched objects); articles which cite the query article are given (subject matter match); context
of the citations to the query article, expandable to several sentences for each citing article (subject matter
match); objects in the same category, as classified by the web-crawler (category match); comments and
corrections by online users (subject matter match); even the articles which have been viewed by the user

who read the query article online (online user match) — see a sample web page (Santini and Jain 1999).

Two or more objects may be specified as a joint query. Joint queries are represented by descriptor averages
— the sum of the frequencies of the descriptors of the members of the joint query divided by the number
of members (Singh, Sheridan, Fluder and Hull 2001) (see example for acetone and isobutylene). Refevance
feedback$S may be used to select the members of the joint query. For instance, let a single query seazch yield
11 active compounds in the top-ranking 300 compounds; three structurally diverse representative com-

pounds from these 11 can be used 1o construct a joint query.

# Positive feedback involves summing descriptors found in “successfully” retricved objects with those in the onginal
query ("Query by example - the Viper Project”; Hull, Singh, Nachbar, Shenidan, Kearsley and Fluder 2001). Negative
feedback involves subtracting descriptors found in “unsuccessfully” retrieved objects from those in the original
query. With neutral feedback no action s taken.
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Similarity scotes

The atom pair (ap) and topological torsion (tt) descriptors and their fuzzy analogues bp, bt, hp, ht, ¢p, ct
and the 3D extensions ag, bg are again selected for illustrative purposes (Carhart, Smith and Venkata-
raghavan 1985; Nilakantan, Bauman, Dixon and Venkataraghavan 1987; Kearsley, Sallamack, Fluder, An-
dose, Mosley and Sheridan 1996; Sheridan, Miller, Underwood and Kearsley 1996; Hull, Fluder, Singh,
Nachbar, Kearsley and Sheridan 2001; Hull, Singh, Nachbar, Sheridan, Kearsley and Fluder 2001; Sheri-
dan, Singh, Fluder and Kearsley 2001; Singh, Sheridan, Fluder and Hull 2001). The Dice similarity index is
used in standard similarity searching implementations — TOPOSIM (T) using topological descriptors and
GEOSIM (G) using 3D descriptors; cosine is used in LaSSi (L). The tuning of the degree of fuzziness in L
Is beyond the scope of this overview, and is taken to be optimal (roughly k = 300).To evaluate the per-
formance of the descriptors one needs a database of compounds for which the biological activities are
known eg. MDDR. Queries are selected that are typical of a drug-like molecule and from therapeuatic
categories that i) contain a sufficient number of actives (e.g. > 50) for reasonable statistics, i1) have several
chemical classes present in them, and iii) are fairly specific, so that most of the molecules probably work

by the same mechanism.

The connection table of the query object (similarity probe) is processed to obtain the set of atom pairs,
and then the database file is scanned to evaluate the similarity between the query and each of the database
structures. The maximum number of structures that the program will select is specified, as well as the
minimum similarity score that a database compound must show to be selected. Within these limits, the
program selects from the database the structures that are most similar (highest similarity value) to the
query and creates an output file of compound numbers and similarity values, sorted by decreasing similar-

ity, for the selected compounds.

As an illustration Carhart pives a similarity probe for diazepam, a widely prescribed drug with sedauve and
anticopvulsant properties. The 100 most similar compounds give similarity values with diazepam ranging
from 1.00 (diazepam itself) to 0.660. OF these, 78 are easily recognizea as analogues of the probe com-
pound. They range from structures which differ from the query by 1 atom through structures which pos-
sess a few different atoms and bonds to more heavily altered analogues. Interspersed with these are 22
other structures that bear resemblance to diazepam but that are not usually thought of as benzodiazepine
analogues. An unusual number of these show psychotropic activity or analogous activities in animal mod-
els. These results are consistent with the expectatuon that similar steuctures will frequently show similar

properties (similar property principle).

A similarity probe with nicotine as query was applied to a database using atom pair as well as topological
torsion descriptors. Interpretation of the similanity scores of the first 1000 compounds sclected by the two
methods indicates that i) tt similarity drops off more steeply — a similarity score of 0.65 obrained by the

atem pair method is roughly equivalent to a score of 0.50 obtamed by the tt method, 1) the first few com-
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pounds are the same in both sets, but beyond this there arc differences. For example, a derivative of nico-
tine is not selected by the ap method, because the additional atoms contribute a large number of ap's.
Another compound whose cyclic analogue is closely related to nicotine is also not selected by the ap

method,; iii) the tt’s perform better than ap’s at low levels of screening.

Similarity searches using the ap and tt descriptors are typically able to discover active compounds which

are in different chemical classes than the probe (Kearsley, Sallamack, Fluder, Andose, Mosley and Sheri-
dan 1996).

Once all similarity scores are calculated, they are sorted from high to low score. Ranks are then assigned:
the molecule with the highest score is rank 1, the next highest rank 2, etc. When many types of descriptors
are used in an investigation, only the ranks of the compounds are used, because the distribution of abso-
lute scores varies from one descriptor to another. More than one descriptor can be used as a basis for
ranking of compounds. A combination score is defined as the mean of the similarities for two single descrip-
tors (e.g. aptt similarity = 0.5 ap similarity + 0.5 tt similarity). A ménimum rank score e.g. mr(ap,tt) for each
compound in a database is defined as its rank in the ap list or its rank in the tt list, whichever is lower. The
compounds are then sorted by the new score, and new ranks are assigned, the smallest score being rank 1,

the next rank 2, etc. This is analogous to taking the union of the top-scoring compounds from the sepa-

rate ap and tt lists.

A measure of effectiveness — initial enhancement (IE) — of a similarity search is defined as the ratio of the

number of actives for a particular therapeutic category retrieved in the top-scoring 300 compounds (ac-

;. . fi 300
tives@300) to the number of actives that are expected by pure chance JE = IR0, , where nac-

nactives x 300/ N
tives is the total number of actives belonging to the corresponding therapeutic category and N is the
number of compounds in the database. Since IE is based on the similar property principle, it is a measure
of how effective a similarity search is for activity prediction. For cases where the number of actives is
small, so that moving compounds across the arbitrary boundary of 300 makes a large difference in IE, a
robust initial enhancement (RIE) has recently been proposed that decreases the weight of an active with

increasing of 1ts rank (Sheridan, Singh, Fluder and Kearsley 2001).

Measures of diversity of the active compounds retrieved in a similarity search are i) mean similarity to the
centroid, and 11) number of structural classes. For each therapeutic category, the retreved actives are used
1o construct the centroid as their descriptor average (see example for two molecules acetone and 1sobutyl-
ene). The mean similarity to this virtual compound (using the least fuzzy descriptor tt and Dice similanty
coefficient) is a measure of the diversity of the set of retrieved actives. Cluster analysis is used to enumet-
ate the number of structural classes within the sct of retrieved actives, clustering compounds together

when similarity between any two of them is greater than or equal to 0.65.
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Correlation of ranks between methods (or descriptors) is a measure of whether two methods (or descriptors)
select different actives for a given probe. A simple scatterplot for the ranks of the compounds obtained
via the two methods that shows little or no correlation would be indicative that the two methods rank the

compounds very differently, i.c. they select different actives as the top-scoring compounds.

Ten activities (narcotic, antihistamine, tranquilizer, dopaminergic, ace-inhibitor, estrogen, sympathomi-
metic, parasympatho-mimetic, serotoninergic, gabaminergic) are studied using the ap, bp, hp, cp, tt, bt, ht,
ct descriptors. The effectiveness of the similarity searches (mean initial enhancements) are ap 26.6, bp
25.0, hp 18.0, cp 23.7, tt 28.3, bt 22.3, ht 19.1, ct 22.8. All descriptors give IE’s>> 1, indicating general
usefulness. The original ap and tt descriptors do better on the average than their fuzzy analogues. Hydro-
phobic descriptors are consistently the worst performers. Average values can be misleading, however, and

detailed analysis (data not shown) reveals that for different activities different descriptors may perform

optimally

Of the 28 possible pairs of combination and of minimum rank scores five are studied as representative —
four combine the scores of a specific descriptor ap or tt with that of a corresponding fuzzy descriptor bp
or cp, and the fifth combines the scores of the original ap and tt. The mean IE’s for the combination
(minimum rank) scores are apbp 29.4 (28.6), apcp 27.9 (28.1), ttbt 32.6 (28.0), ttct 30.7 (28.1), aptt 29.8
(28.9). Both scores do better on the average than the component scores, e.g. ttbt 32.6 is much better than
tt 28.3 or bt 22.3. Combination scoring gives somewhat higher IE’s than minimum rank scoring; hence it

is preferred for future use. Of the five combinations, ttbt is the clear winner.

Correlation of ranks between pairs of descrptors varies from 0.10 to 0.98 with no apparent pattern. Any
nwo descriptors may rank the same set of actives very differently — the ranks of actives are very sensitive to
atom type definition. For practical similarity searches, where one 1akes a relatively small number of top-
scoring compounds, different descriptors will seem to select different subsets of actives. Even though
some are with lesser enhancements, all eight descriptors are kept for future use for generating as diverse a

set of actives as possible.

Eight therapeuuc categories are studied using 2D (ap, bp) and 3D (ag, bg) descriptors and their combina-
tion scores. The mean IE’s obtained are ap 17.8, bp 20.4, apbp 22.5, ag 18.5, bg 19.7, agbg 21.5. The
combination scores do betrer in all cases, hence they are preferred. agbg has an [E lower that apbp - 3D
descriptor similarity searches G (using ag and bg) do #of find more actives than topological searches T
(using ap and bp).

Correlation of ranks between 2D and 3D descriptors {(apbp and agbg) indicates that generally the ranks
cluster alonp the diagonal (cocfficient 0.99), re. the overall rankings by T and G are similar. However,

there are compounds that fall far from the diagonal - compounds where similar chemical groups are held



31

via a different topological connectvity. To avoid missing such compounds it 1s useful to keep the 3D

option for similarity searching.

The standard implementation T and variable fuzziness implementation L are evaluated using the same
original descriptors ap and tt. Mean initial enhancements are ap T 33, ap L. 42, tt T 37, te L 40, aptt T 39,
aptt L 45, hence the combination score is preferred. Initial enhancement using aptt score for single probes
varies from 7 to 83, mean 45 for L, from 6 to 109, mean 39 for T. Hence L is as good as, or better than T
for selecting active® compounds from a large database of drug-like molecules (Hull, Fluder, Singh,

Nachbar, Kearsley and Sheridan 2001).

An example of a scatterplot between the ranks of actives retrieved by L and T (figure not shown) indicates
that there is little to no correlation for any of the probes — the actives are scattered and do not fall near the
diagonal. This lack of correlation of ranks between L and T indicates that the two implementations select

different sets of actives (Hull, Singh, Nachbar, Sheridan, Keatsley and Fluder 2001).

1E using aptt for jeint probes varies from 19 to 113, mean 71 for L, from 37 to 113, mean 69 for T. Hence
the use of joint probes significantly enhances the rate of retrieval of active compounds compared with the

single molecule probe.

The average for five therapeutic classes of the mean similarity of the retrieved actves to the centroid is
0.51 for L, ranging from 0.10 to 0.70; for T it is 0.52, ranging from 0.23 to 0.74. L retrieves 6.6 structural
classes on average, T — 5.5. Thus the diversity of the retrieved actives is somewhat greater for L than for
T. This is not surprising since L retrieves diverse chemical structures through fuzzier descriptors whereas
T retrieves only compounds that share descriptors with the probe. L (fuzzy descrptors) could be used
initially to identify most diverse structural classes. Subsequent similarity searches with less fuzzy descrip-

tors (1) couid retrieve in depth the actives corresponding to these classes.

Application areas

Similarity searching allows ranking and retrieval of objects in databases according to their similarity 1o a
query. Similarity searching is firggy (“fuzzy-match searching” (Fisanick, Lipkus and Rusinko 1994), “fuzzy
version of exact searching” (Willett, Barnard and Downs 1998)) in that it retrieves not only the query ob-
ject (as the most similar one), but also (other) similar™ objects. For example, pattern matching finds patterns
that may be missed because the exact patterns specified may be slightly off; signature analysis allows identifi-
caton of objects that have signatures which are never identical and may be missed by an exact search.

Similarity searching is fawlt-folerant in that it reduces the effect of query specification errors. A similanty

It 1s not clear whether all instances of fuzziness (Wang 1996; FT&T 2003) can be reduced 1o using similanty, see
eg (Bilgic and Turksen 1999). Fuzzficaion can be achieved using measurement theory (sce eg. fuzzy binaing),

fuzzy descriptors (see above), fuzzy similanty measures (e.g. fuzzy Hamnung distance ("Fuzzy Hamming distance™)),
cte
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scarch ‘reduces’ to an exact search if the set of characteristics used are identical to those used for an exact

search.

Similarity searching is content-based because it uses characteristics of the objects as search criteria rather than
descriptions about the objects such as keywords (meta-data). Content-based ranking and retrieval is inde-

pendent of nomenclature, location, etc.

Basing on the similar property principle, objects with similar properties may be scarched for — property
prediction. Given an object with desired properties, the direcs approach is to look for (e.g. structurally) simi-
lar objects, and expect that among the high-ranking retrieved objects some will exhibit the desired proper-
ties or even improve on them. In the reverse approach the properties of the query are ‘predicted’: if signifi-
cant similarity is found between a novel query object and objects in a database these similarities may
provide information about the properties (e.g. structure and function) of the new object. One may suspect
a relationship between two or more objects that one would like to explore. Similarity searches may
uncover previously unnoticed relationships between the objects. Objects may be globally similar, or have
similar regions. Two (or more) objects can be compared to identify regions of similarity. Significant

stmilarity may suggest an ‘evolutionary’ relationship between the similar objects.

In chemical similarity searching, browsing of ranked similar objects may be used for evaluation of the
uniqueness of proposed or newly synthesized compounds, finding starting materials or intermediates in
synthesis design, handling of chemical reactions and mixtures — finding the right chemicals for one’s needs, even

if one does not know exactly what he is looking for ©.

‘Direct’ property prediction is a standard technique in drug discovery. Given a compound with an interest-
ing bioclogical activity, compounds that are similar to it in structure are likely to have a similar activity. In
practice, an investigator provides a chemical structure as a probe, searches over a database of sample-
available compounds, and finds those that are most similar, which are then submitted for testing (Hull,

Fluder, Singh, Nachbar, Kearsley and Sheridan 2001).

Automated, miniatunzed, and parallelized synthesis and testing (combinatorial chemistry/high-throughput
screening) are accelerating the development of a complex of methods for data mining (Efectronic Statistics
Textbook; Gillet, Willett and Bradshaw 1998; Chen, Rusinko, Tropsha and Young 1999) and computer
screening {virfaal sereening) ("Virtual screening™) of object libraries. Classes of objects are recognized (c/uster
analysis (Electronic Statistics Textbook; Downs and Willett 1996)) basing on estimation of distances in descrip-
tor space (dissimilarities). In object selection, as diverse classes as possible are chosen so that all the differ-
ent types of properties (e.g. bioactivities) within a larger collection are sampled using as few objects as
possible (diversity analyses) (Gillet, Willetr, Bradshaw and Green 1999). Key chemical features and the spatial
relationships among them that are considered to be responsible for a desired biological activity may be

wentified (pharmacophore recognition) using local similarity e.g. via common substructures in sets of acuve
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molecules (Sheridan and Miller 1998); pharmacophore searching i 31D databases may be carried out using a
pharmacophore as the query (Chen, Rusinko, Tropsha and Young 1999). Shape similarity of ligands to a
receptor site (/igand docking) may be used for finding structures that fit into proteins. Molecular superposition

may use similarity optimizer techniques.

‘Reverse’ property prediction is used with chromatography application databases that contain separations,
including method details and assigned chemical structures for each chromatogram. Retrieving compounds
present in the database that are similar to the query allows the retdeval of suitable separation conditions
for use with the query (method selection). (T'his is analogous to a doctor doing a similarity search on digital x-
ray images: by retrieving similar x-rays present in the database, he can find other patients whose condition

is similar to his paticnt, and thus learn from their treatment and expenence).

Similarity searching may be used as a step in strwcture elucdation, e.g. 1) similarity search the available (NMR)
spectra database using the experimental spectrum as a query (pattern mah.‘f)ing); i) do an exact search for the
(sub)structures corresponding to the high ranking spectra retrieved in i); iii) use these (sub)structures and
additional information (e.g. IR, MS spectra) to determine common fragments which have a high probabil-
ity of being contained in the structure of the unknown compound; iv) validate the results by using spec-
trum prediction software for the identified fragments (Williams 2000). In stage i), not only the similarity
ranking is important — usually the most similar spectrum is the target one, but also the similarity values are

important - a value below a certain threshold indicates a probably invalid solution.

Signature anafysis also uses elements of reverse ‘property’ prediction. For synthetic drugs, practical
experience has shown that the impurity profiles of the products from a given illicit laboratory are
charactenstic. Provided that there is no change m the method or the conditions of drug synthesis,
vadations in the impurity content of drugs synthesized at different times by the same chemist in a
clandestine laboratory are believed to be relatively small. Consequently, based on their chemical
characteristics, samples of seized drugs can be classified into groups identified by their chemical impurity
profiles, and a given sample or group of samples may be associated with an individual chemist or
laboratory operating clandestinely. It is thus possible to link together illicit drug consignments from the

same source and to build up a database of related drug samples over a period of time.

Similarly, starting materials used in illicit drug manufacture may also contain certain characteristic
impurities. The impurity content and the type of impurities may vary depending on the nawre of the
starting material, on whether a precursor chemical was diverted from legitimate sources or was itself
manufactured clandestinely. The idendfication of characterisuc impurities (or impurity patterns) in

precursors may therefore help to link them to a commercial or clandestine source ("Signature analysis”).
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Conclusion

Similarity (fuzzy) searching is a powerful alternative to exact searching that is being added to all contem-

porary database implementations.
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