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By means of linear algebra we develop several useful mathematical expressions for
multivariate linear regression that are suitable for .QSPR/QSAR theory. Our equations
reveal the effect of adding or subtracting orthogonal molecular descriptors and may be
useful for the construction of optimal QSPR/QSAR models. We illustrate the application of

our equations by means of three simple test cases studied earlier by other authors.
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L INTRODUCTION

Multivariate regression analysis has proved useful in structure-property and structure-activity
studies. For such applications one has to determine the best set of molecular descriptors for the
given molecular property or activity. Earlier attempts to derive the best quantitative structure-
property and structure-activity regression (QSPR, QSAR) models have led to the use of orthogonal

descriptors.1-5

[t is well known that the use of a set of orthogonal descriptors does not improve the global
statistical parameters of the linear regression with respect to a model based on nonorthogonal
descriptors, although it has been found that the standard errors of the regression coefficients are
smaller in the former case.# Moreover, orthogonal descriptors (orthogonal predictor variables in
general) offer several advantages: first, expressions for some statistical parameters (such as the
correlation coefficient and standard deviation, for example) are simpler.® Second, orthogonal
descripters have proved more suitable for the search of the best model according to given quality
criteria.8- Third, the orthogonalization algorithms are useful to identify linear dependent or almost
linear dependent descriptorswv“ and make the linear regression more stable.10 Fourth, the

coefficients of the orthogonal descriptors do not change when the set is augmented while those of

the nonorthogonal descriptors vary appreciably.

Several authors have developed a program that enables one to obtain the best subset (with

respact to the values of selected statistical parameters) of 1 descriptors out of a large number of N

N
descriptors.6‘9 This analysis requires linear regressions for all ( P ]: NV[(N«I)!I!] possible

subsets. Once we have the best set of descriptors we then lock for the best ordering among the /!

possible ones according to a dominant component analysis.6-? Orthogonalization also facilitates
this step because it makes it easier to determine the contribution of each descriptor to the model.
This systematic search for the best QSPR/QSAR model has proved useful for many chemical

applications.6-9,12-15

Linear algebra proves suitable for the discussion of multivariate regression analysis. ! The

purpose of this paper is to develop this approach further, and derive some useful relationships that
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have not been discussed earlier in this context.!! We do this in Sec. IL. In Sec. III we apply the
general equations to some simple illustrative examples. Finally, in Sec. IV we summarize the main

results of the paper.

1L MULTIVARIATE REGRESSION

In this section we develop the method of least squares and multivariate regression from the point of
view of linear algebra.|® We will try to go beyond a previous discussion on the subje:ct11 and show
that some numerical results discussed previously by other authors can be proved rigorously and
easily. Although some of the theoretical results derived below may be well known, we show them
anyway in order to make this paper self-contained. In addition to it, the following mathematical
discussion will be useful to introduce the notation that we will use throughout this paper.

Consider a vector space ¥ ={f,g,...} on the field of real numbers, endowed with an inner

product f-g. We define the norm || i ” =\ f-f ofavector f&V and a distance between |

and g, f,geV,as D(f,g)=|f-g|.

Let B={f;, fi,~--,/,} be asetof n+1 linearly independent vectors that span a subspace
S, < V. Itis well known that the set B is linearly independent if and only if the determinant iMI

of the matrix M with elements M, =f,-f,, i,j=0,1,... is nonzero.

It is our purpose to find the closest approximation to a given vector f € ¥ by means of a

linear combination of vectors of B:

F=¥es, M

§=0

It is well known that the set of coefficients ¢; that minimize the distance D(f,f), and are

consequently solutions to the equations 6D(f,f)2/66'1=0, J=0,1L...,n make f—f
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orthogonal to the subspace S . Therefore, it follows from (f—j)f, =0, j=0,1,...,n that the
optimal coefficients ¢; are solutions to the set of linear equations

ZM,.Cﬁf-f,, F=0L.un: @

k=0

Under such conditions it follows that D(g, /)= D(f,f) forall g €5,. One can also prove that
(f—v)-(j—v]:“f—vul for all ve S, as well as ﬂf—f"z =“f—v|l2 —Ilf—v“z. It follows

from these expressions that ff = “f”z, and "_ﬂlz £ "f"2

As argued in the introduction, it is convenient to use an orthogonal basis set for the subspace
Sy, from both the theoretical and practical point of view. There are many ways of orthogonalizing
a finite set of linearly independent vectors; here we consider the well-known Gram-Schmidt
algorithm. 10,1 1,16 Starting from the basis B we construct a new basis {u,u,,...u,}

hierarchically according to

uy = fy,
J‘!u.f &)
”;=f;‘z ] w

2 H‘.
Tl

The closest approximation to f in terms of the set of orthogonal vectors takes the simpler form
30 fu
F=Sbu, b="—1 @)

where we realize that the coefficients b] are independent of 7.

Note that according to Eq. (3) we can write

J
%=§%ﬂ,%:i )
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where the explicit expressions for the coefficients d,, are not relevant for present discussion. If we

substitute Eq. (5) into Eq. (4) and take into account that the least-squares solution is unique, we
n o

conclude that ¢, = Z;-k d,,b, from which it follows that

¢, =b, (6)

This result was suggested by numerical experiments conducted by Randi¢2 and later discussed by

this and other authors, 23,514 but it was not proved rigorously as far as we know. Eq. (6) is a
consequence of the particular triangular form of the Gram-Schmidt linear combination (3) and one

does not expect that it applies to other orthogonalization procedures.

If we define u, = u-(u-w/uw"z)w and v, =v—(v-w/||w“2)w for u,v,weV , and take

into account the Cauchy-Schwarz inequality1 6 we conclude that the ratio

Cor D =Lnd o

satisfies —1 < C(u,v,w) <1.

In the application of these results to multivariate linear regression the vectors are N-tuples of

real numbers £ = (f(1), /(2),..., f(N)) and we choose the inner product to be

N
I-g=2fgli). (8)

J=
Typically the components of the vector £, are f,(j)=1, j=12,...N sothat n_ﬂ,ir =N and

8-y
i

WZR(.‘) =<g> ©

is the expectation value of g € V' . Clearly, either ¢, or b, plays the role of the constant or intercept

in multivariate regression analysis.

It follows from the definition (7), and from f- f = ")7'"2 and f- fy = j-’f;, =b, ﬂfo") that
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V[ -5 sk
Jt =& UAR) (I -#1r)

7 -0k
WA -8 Al

St )=

Therefore, the coefficient of correlation R between f and j is simply given by

i -5l

0L R=C().]. /)= | ar—r—er S 1.
NI -8 A

The standard deviation S in terms of present notation reads!7

s DD
NN -n-1

It follows from Eq. (11) that

: [
R=YR, R=—7L _=c(fu,f)
R T

(10)

a1)

(12)

(13)

From now on we assume that the vector f represents a given property or activity for a set of

N molecules, and the vectors f{, f,..., f, are predictor variables or descriptors in the language of

QSPR/QSAR theory for those molecules. Accordingly, the vector f is the regression model.

Some authors, like Randi¢,2 do not modify one of the remaining n vectors, say f;, during

orthogonalization. In order to compare our coefficient b, with Randi¢’s by we simply take into

account that

F=b b fi+Sbu, b =b -t
= Jlo]

(14)
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We calculate the error of the coefficients ¢, and bJ by means of the standard formulal7

which in present notation takes the form

Sc,={(M™),S, &b, =ﬁ- L
J

The Gram-Schmidt algorithm gives us

fj=ie,y.u*, e, =1 (16)

k=0

where the explicit form of the coefficients e, is not relevant for our purposes. Notice that the

matrix £ =(e,).) is upper triangular. It follows from Eq. (16) and from the definition of the matrix

elements of M
mini, /) 4
My=f-f= 2, eyl an
k=0

2
that M = E'UE , where U = (“u y " 5,;,) , and the superscript ¢ stands for transpose. Therefore,

(18)

and we have
b¢c, =6b, (19)
in addition to Eq. (6).

What happens when we add or remove one of the descriptors to or from our model?. If we

define

» X
Fm - ijuj 20)

1=0
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and

w _ DU )
g VN-k-1 )

then we have
N =k=2)(S40) = (V= -D)(SH) -8 Jg - @2)

Arguing exactly in the same way for the case of k orthogonal descriptors given in arbitrary order

we obtain
kY2 _ g2
(Slk*ll) S[” S ) kb_l:L ” 23)
or
(5""1)1 = (S“h’l)1 +-b} |, "2 _(S[M')z (24)

N-k-1
which clearly show the effect on S of adding or removing u , respectively. Eq. (24) explains why
Lugié et alb could improve the model by removing carefully selected orthogonal descriptors. If
bf "“;”2 is sufficiently small, then removal of u#, may decrease the value of § while slightly
reducing the value of R (c.f, Eq. (13)). Taking into account that b} u“:nz = (f-uJ )2/””1"2 plays

such a relevant role in the values of R and S we consider it to be a measure of the contribution or

weight of the orthogonal descriptor i, to the model.

L. SIMPLE NUMERICAL EXAMPLES

The value of R increases and approaches unity and D(f,f) decreases and approaches zero as the

number of linearly independent vectors fJ increases. When n+1=N we have an interpolation
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case with R=1 and D(f, f)=0 because S, =¥ . On the other hand, S may increase with the
number of descriptors as shown by Eq. (23). A QSPR/QSAR model is successful if it gives
acceptable statistical parameters with a small number of descriptors. The values of the global

statistical parameters (S, R, etc.) depend on the subspace spanned by the chosen vectors f; or u,

and are independent of the order of construction of the orthogonal vectors. As far as we know there

is no direct way of selecting the subsct of m < n vectors of B that gives the optimal approximation
to f . For this reason we follow other authors6-9:12,13,15 and single out the sets of 1,2,...n

z[n
descriptors with the smallest value of S . This strategy requires Z[ ] = 2" —1 linear regressions.

m=}
We select the subset of m descriptors with the smallest value of S and then inspect all the m!

orthogonalization orderings of those vectors to obtain the optimum sequence according to a

dominant component criterion similar to that proposed by Randi¢2 and applied by other authors.6

2
We base our criterion on the value of b}. ”u J“ as argued in the preceding section. Our algorithms

and main guiding ideas are similar to those proposed by Trinajsti¢, Luié and coworkers.6-
9,12,13,15

The first test case for our numerical investigation is the fitting of Hosoya’s Z index by means
of connectivity and higher connectivity indices ' X discussed by Randié.2 In this case we choose
f=Zand f,="'X, j=1,23,4 given in Table II of that paper.2 Consequently, our orthogonal
descriptors u; should be compared with Randi¢’s /Q. The coefficients b, that we obtain by
means of the procedure outlined above agree (up to round-off errors) with those generated by
correlations and residuals2. The coefficient b, (the constant in the language of linear regression)

should be modified according to Eq. (14) in order to have complete agreement.
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Table I

Statistical parameters for our best sets of 1, 2, 3 and 4 connectivity indices and for two models
proposed by Randi¢?

Descriptors R S
{u,} 0.99288 0.34865
{u,uy} 0.99803 0.19844
{1y, 1) 0.99903 0.15293
{uy, 10y, 5, 1.} 0.99906 0.16800
{uy, 0y, 1) 0.99872 0.17512
{u,, Uy, u,} 0.99865 0.17987

In Table I we show the sets of 1, 2, 3, and 4 descriptors with the smallest values of S . Notice
that the combination {ul,u,,ué} gives a smaller value of S than the complete available set
{u,,uy,,,u,} . The set of three descriptors obtained by Randi¢ by means of his systematic
procedure {u,, u,,u,} , and the one that he mentioned to be the best {u1,u2,u,} yield greater
values of S as shown in the last two rows of Table 1. Table I also shows that in this case it is
profitable to remove one of the descriptors (fz = 2X) because we tﬂus obtain a smaller value of S

and almost the same value of R with less predictor variables.
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Table I1

Coefficients of the nonorthogonal and orthogonal descriptors for the model with smallest S

Descriptor Coefficient Error Descriptor Coefficient Error
¥4 -44.24820797 1336605724 U, 17 0.0509757195
if: 18.93451086  0.4736646298 u, 17.96670982  0.3594210985
% 0.7807444357 0.2042389764 u, 1.102350730  0.1464411551
£ -0.6857907910 0.3035836814 u, -0.6857907910 0.3035836814

In Table Il we show the coefficients of the nonorthogonal and orthogonal descriptors and
their respective standard errors for the best model. At this stage we do not perform a dominant

component analysis and simply orthogonalize the descriptors in the given order. We appreciate that
the errors are smaller for the orthogonal descriptors as argued earlier by Randi¢,4 and that ¢, =b,
and 8¢, = &b, according to equations (6) and (19), respectively. Our calculations show that the

order of orthogonalization affects the coefficients b, their standard errors é'bj , and the absolute

relative errors \é‘b}/bl |

The magnitude of the coefficients bj depends on the orthogonalization order; for example,

the ordering {j;,f“f,,f]} yields the model with the largest coefficient b,

Z =(17£0.05097571950) £, + (19.65031864 +0.4350803632)u,

25)
+(0.7807444357 +0.2042389764) s, - (4.045288078 £0.1798196005 ),

with coefficients of %, and u, larger than the corresponding ones in Table II obtained from the

orthogonalization sequence { fy, A, f3, /i) -

The next example is the fitting of the standard deviation S by means of a polynomial
function of the coefficient of correlation R proposed by Randi¢.3 Those values of § and R were

obtained from several single-variable regressions for 18 octane isomers.3 In our notation f=8
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and j; =R’', j=0,1,2,3,4, where the values of S and R are given in Table 1V of that paper.3.

By application of the method outlined above we obtain the optimum model

§ =(4.696+0.001592282751) f, —(2.610009295+0.0333750566 ) u,

(26
+(7.238292482+0.6107060177 )1, —(4.85257838 +0.007179313592) . )

with standard deviation S'=0.01007 and correlation coefficient R’ =0.99996. The model in Eq.
(26) corresponds to the orthogonalization order {fo,ﬂ,ﬂ,ﬂ} that gives the largest coefficients
bj . Notice that we obtain a smaller standard deviation when we omit the linear term. If we carry out

the calculation within the same subspace with nonorthogonal vectors we obtain the model as a

polynomiai function of R :

§=6.393791575+0.01289288983 (5‘721 961166+0.2646728651) R?

@7
+(7.238294377£0.6107060138) R’ - (6.499904447 £0.3778579316) R* .

The errors of the coefficients are larger but the standard deviation and correlation coefficient are

exactly the same.

Qur iast example is the modeling of the boiling points of several octanes by means of

connectivity indices given in tables 2 and 1, respectively, of Lutié et al.b In this case we choose I

as usual and f”l ='y, j=0-6. We have tested all possible sets of 1,2,3,4,56 and 7

connectivity indices, and found that the smallest standard deviation is given by the model

bp =(113.7132222+0.2070758473)u, —(24.74180191 £1.170657363 )y,
+(70.786048 £5.466486863)u, —(3.221924496 £1.412762703)u,
~(10.50036138+0.9155462828)u, —(12.14038512+1.543384974)u,
—(7.664196453+7.358202687)u,

(28)

with § =0.87855 and R=0.99331. In this case we have not tried a dominant component
analysis keeping the given order of descriptors. Notice that our optimum model is given by 6
descriptors and not by 5 as found by Lugi¢ et al.6 The disagreement is duc to misprints in two

entries of Table I in that pape:r.Is
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Table 111

Corrected connectivity indices for the molecules considered by Lu¢i¢ et al6,18

0 1 2 3 4 5 6

x x X x X x 4

6.24264 3.91421 2.41421 1.45710 0.85355 0.47855 0.25000
6.40577 3.84606 247119 1.85162 1.10517 0.40824 0.00000

6.40577 3.80806 2.68252 1.56294 1.12993 0.28867 0.14433
6.40577 3.80806 2.65564 1.74740 0.75671 0.49279 0.14433
6.40577 3.77005 2.88962 1.38502 0.80258 0.43301 0.28867

6.56891 3.71874 2.77106 2.25930 0.80473 0.16666 0.00000
6.56891 3.71874 2.82059 1.99156 1.23148 0.00000 0.00000
6.62132 3.68198 2.87132 2.56066 0.75000 0.00000 0.00000
6.56891 3.68073 3.00997 1.88208 0.78867 0.33333 0.00000
6.56891 3.66390 3.14296 1.57069 0.97140 0.33333 0.00000
6.56891 3.62589 3.36504 1.32136 0.66666 0.66666 0.00000
6.62132 3.62132 3.26776 1.88388 0.85355 0.17677 0.00000
6.62132 3.56066 3.66421 1.28033 0.70710 0.53033 0.00000
6.73205 3.55341 3.34715 2.10313 0.76980 0.00000 0.00000
6.78445 3.50403 3.49683 2.47417 0.40824 0.00000 0.00000
6.78445 3.48138 3.67532 2.09077 0.61237 0.00000 0.00000
6.78445 3.41650 4.15863 1.02062 1.22474 0.00000 0.00000
7.00000 3.25000 4.50000 2.25000 0.00000 0.00000 0.00000

Table I1I shows the connectivity indices with the two corrected entries in boldface. '8 if we
take into aczount this corrected table of connectivity indices the agreement is complete. For

example, our best model with nonorthogonal descriptors is
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(2583.416346 +£450.923869) f, —(182.7562811+25.59325052) f,
—(310.4975894 £ 67.62496045) f, — (46.14952271+12.54416987} f, 29}
+(8.304446637 £1.872065541) f, — (5.666366773+1.703086193) f;

with R =0.9926 and § = 0.8867. On the other hand, for orthogonal descriptors in the given order

we have

(113.7132222+£0.2090046467)u, — (24.74180192 £1.181561403),
+(70.78604760 + 5.517404228)u, - (89.06184140+7.014153148)u, (30)
+(8.851964612 +1.864818580)u, —(5.666367297 £1.703086193)u,

which does not agree with those reported by Luéic et al® because the orthogonalization order is
different.
Table IV

Coefficients of the orthogonal descriptors obtained by orthogonalization in the order indicated by
their indices

Descriptor Indices Orthogonal Descriptor coefficients

0 2 5 6 113.7132222 30.32810932 -10.26946598 -12.77271243

2 6 5 113.7132222 30.32810932 -8.028451822 -13.12861838
0 5 2 6 113.7132222 2.87934073 40.7257032 -12.77271243
0 5 6 2 113.7132222 2.87934073 6.368681705 53.41560197
0 6 2 5 113.7132222 6.731371914 36.48492833 -13.12861838

0 6 5 2 113.7132222 6.731371914 2.262083058 53.41560198

In Table IV we show the coefficients of the orthogonal descriptors for all the possible

orderings of the subset # =3 with smallest S .

The agreement with the results of Lui¢ et aib is complete except for the first entry because of a

mispriat in those author’s Table 4.18
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Table V

Weights of the descriptors for several orderings of the optimal model

Descriptor Descriptor weigths
Indices

23 6 1 4[0.6743500578 0.1346742520  9.980236002-107 0.1517627958 0.02429655627
326 1 4]0.7773041441 0.03172016579 9.980236002:10° 0.1517627958 0.02429655627
23 6 4 1[0.6743500578 0.1346742520  9.980236002:10% 0.1131001591 0.06295919298
32 64 1]0.7773041441 0.03172016579 9.980236002:10° 0.1131001591 0.06295919298

In Table V we show the weights of the orthogonal descriptors in the subset with the smallest
value of S =0.8867, for four different orthogonalization orderings. The entries in that table

suggest that it may be reasonable to remove the orthogonal vector ug with the smallest weight. If

we do that we obtain four new models with four descriptors each that yield S =0.85481 and
R=0.99251. This value of S is smaller than the smallest one that we can get by removal of
nonorthogonal descriptors. This notable advantage of orthogonal predictor variables that help us to

remove insignificant descriptors was first pointed out by Lugié et al.6

i CONCLUSIONS

The main equations developed in Sec. II by means of lincar algebra prove useful to explain many
results in QSPR/QSAR theory. For example, we have rigorously derived the relation between the
coefficients of the last descriptor in equivalent models with nonorthogonal and orthogonal
descriptors Eq. (6) already mentioned before by other authors2:3:3:14_ In addition to it, we have
shown that the errors of those coefficients are exactly the same (Eq. (19)). More important are
present expressions for the contribution of each orthogonal descriptor to the correlation coefficient
Eq. (13) and to the standard deviation equations (23) and (24). They reveal the effect on the
statistical parameters of addition or subtraction of orthogonal deseriptors. The knowledge of the

contribution or weight of each descriptor is relevant for removing insignificant descriptors from a
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model. In fact, numerical results in Sec. Il show that removal of orthogonal descriptors with
negligible weight may result in a smaller value of S and an almost similar value of R . Although
this kind of results were mentioned before® most discussions were based on numerical investigation
on particular examples and not on rigorous equations like (13), (23) and (24). It is also important to

notice that the optimum models derived in the preceding section from Table V are not exactly those

proposed by Lugié et al® who were the first authors in realizing that one may obtain better models

from orthogonal descriptors than from nonorthogonal descriptors.

We have also addressed the problem of construction of optimal models by considering
subsets of descriptors chosen from a larger set. This investigation can be carried out either with

nonorthogonal or orthogonal descriptors.

Finally, it is worth mentioning that computer algebra systems (CAS) like Derive!? and

Maple20 proved extremely useful for the calculations in this paper. Although CAS are rather slow
for massive computations, they are however extremely useful for algebraic and numerical
investigation on relatively small problems because they allow us to set arbitrary precision, and even

to carry out multivariate regression in exact rational arithmetic, thus avoiding round off errors.
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