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Abstract

The general Randi¢ index of a (molecular) graph G is defined as the sum of the weights
{d(u)d{v))® of all edges uv of G, where d(u) denotes the degree of a vertex u in G and a is an
arbitrary real number. In this paper we obtain the lower and upper bounds for the general
Randi¢ index among graphs with n vertices and characterize the graphs whose general Randié¢
indices reach the maximum and minimum. We give a clear picture depending on the real

number @ in different intervals.

1 Introduction

In 1975 Randi¢ [6] proposed several numbering schemes for the edges of the associated
hyvdrogen-suppressed graph based on the degrees of the end vertices of an edge in study-
ing the properties of alkane. To preserve rankings of certain molecules, several inequal-
ities involving the weights of edges necded to be satisfied. Randié stated that weighting
all edges uv of the associated graph G by (dg(u)de(v))™" or by (dg(u)dg(v)) ™ pre-
served these inequalities, where dg(x) denotes the degree of a vertex u in . The sum
of these latter weights over the edges of G is called the Randié mder of G, denoted
by R{G). Some researchers often call it connectinty dexr [2]. Randié¢ index is an

important molecular descriptor and has been closely correlated with many chemical
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properties (5], So, finding the graphs having maximum and minimum Randié¢ indices
and related problem of finding lower and upper bounds for the Randi¢ index, attracted
recently the attention of many researchers, and many results have been achieved, see
[1,2,3,4,8]. Clark and Moon [3] were interested in the former index and they gave a
bound for trees. Bollobds and Erdds [1] generalized these indices by replacing —} with
any real number a, which was called the general Randié indez in [3]. Here we denote
it by Ro(G). When a = 1, it 1s another important chemical index, called the Zagreb
group index My, see [7]. In the following, we obtain the lower and upper bounds for the
general Randi¢ index among graphs with n vertices, and the corresponding extremal

graphs. A clear picture is given depending on the real number « in different intervals.

2 Some notations and known results

¥or a graph G = (1, E), we denote the number of vertices (order) by n and the number
of edges (size) by m, and for any vertex v € V we denote its degree by d(v). We deal
with graphs without isolated vertex only, since isolated vertex contributes nothing to
the sum. For a real number a, we use [¢] to denote the maximum integer smaller than
or equal to a, and [a] to denote the minimum integer greater than or equal to a. We
call a tree an r-star if it is a star with r (r > 1) leaves. A l-star is simply called a stub.

It seems that to obtain the lower and upper bounds for the general Randi¢ index
is somewhat more difficult than for other kinds of indices, in a given class of graphs,
such as graphs of order n, trees of order n, etc. The following theorems are the main
known results so far on the lower and upper bounds for the Randi¢ index and general
Randi¢ index.

Theorem 2.1 (1] Let G be a yraph of order n, containing no isolated verter. Then
R(G) > vn =1
unth equality if end only if G is a star.

Theorem 2.2 [2, Theorem 1] Awmong graphs with n vertices, the graphs without
:solated vertices, in which all components are regular, have the rnaximum Randié index,
cqual to nf2.

Theorem 2.3 [1] Every graph (7 of size in satisfies that

3 W 20
Ro(G) <m (_‘./ET—,;l 1)
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ford <o <1, and

Ra(@) 2 m

VEmA1-1 )2"
2

for =1< a <.

Theorem 2.4 [3/ For atree T of ordern > 2,
n+8
1< R\(T) < s
SRA(T) < 3

In the next two sections, we investigate the lower and upper bounds for the general

Randi¢ index and the corresponding extremal graphs, among graphs of order n. We
distinguish a few cases by considering the values of a.

3 The cases for a at 0,—3,—1

The case for & = —% was completely solved by the above Theorems 2.1 and 2.2. So,
there are two cases left.

For @ = 0, the general Randié¢ index of a graph G is exactly equal to the number of
edges in G. So we have the following simple result.

Theorem 3.1 Let G be a graph of order n, containing no isolated verter. Then
n n(n — 1)
—| € Ro(G) £ ——=
EPEYEPES
with right equality if and only if G 1s a complete graph, and with left equality if and
only if G 15 a forest composed of § stubs for n cven, and u forest composed o 1%4 stubs
and a 2-star for n odd.

From Theorem 2.2 one can sce that the complete graph is a graph that has the
maximum value of /2_:. However, for R_, we show in the following that contrary to
2
R 1, the complete graph has the minimum value of 1_,.
2

Theorem 3.2 Let G be a graph of order n, containing no isolaled verier. Then
" n
M < RG) < l—J
2n 1) 7 G = |3
with left cquality of and only of G s a complete graph, and with rght equabty of end
only f G s a forest composed of § stubs for n is even, and a forest composcd of *

stubs and a 2-star for n 1s odd.
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Before proving it, let us show the following lemma first.

Lemma 3.3 Let uv be an edge of minimum weight in a graph G such that uv is not ¢
leaf. Then
R-|(G = lﬂ)) > R‘l(G)

Proof. Denote by S, the sum of weights of the edges, other than uw, incident with
the vertex u, and S, the sum of weights of the edges, other than uv, incident with the
vertex w. Thf‘l'l we hﬂ.\"(_’
d(u) — 1 d(v) -
Sy > ———and S, > ———.
= dwyd) 7 7 d(v)d(w)

So, we have

R_\(G — uwv) — R, (G)

(1) v (1) -

du) -1 1 +d(v)»1 T 1

= d(v)d(u)d(u) -1 * d{v)d(u)d(v) -1 d(u)d(v)
1

= )

1
Now we give the proof of our Theorem 3.2. We claim that a graph with the maxi-
mum value of R_, must be composed of stars, for otherwise, from Lemma 3.3 we would
get a graph with larger value of R_, by deleting the edge with the minimum weight.
Since any star has the same value 1 of R_,, the graph with maximum value of R_,
must have most star components. The forest composed of 5 stubs for n even, or the
forest composed of "—2'—3 stubs and a 2-star for n odd, has the maximum number of star
conponents among graphs of order n. So we get that G has the maximum value of
Ry ifand only if G is a forest composed of § stubs for n even, and a forest composed
of '—f stubs and a 2-star for n odd.

In the following we show that the i1 (G) bas the minimum value of R if and only
il G is a complete graph.
If we <enote by S, the sum of weights of the edges incident with the vertex w, Then

d(u) 1

EE = Ddw) n-1
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So we have

1 1 n 1
RA(G) = Z m=§u€zv5u2 =

n-—1
uvEl
with equality only if each vertex in G has degree n — 1, i.e., G is a complete graph.
Now the proof of Theorem 3.2 is complete. [ ]

4 The cases for « in different intervals

In this section we deal with our problem by considering the real number « in different
intervals.
Case I. @ > 0.

This is a very simple case, since it is easy to see that adding edges to a graph will
increase the sum, while deleting edges will decrease the sum. So, we get a result just
like the case for & = 0.

Theorem 4.1 Let G be a graph of order n, containing no isolated vertez. When o > 0,
we have 1y 4

g < R(G) < nln—1+1
for n even, and

= — 1)2a
n23+2‘+°SRu(G')Sn(n ;} +1

for n odd, with right equality if and only if G is a complete graph, and with left equality

if and only if G is a forest composed of § stubs for n even, and a forest composed of

%3 stubs and a 2-star for n odd.

Case II. -5 < a < 0.

Theorem 4.2 Let G be a graph of order n, containing no isolated vertex. When
-3 <a<0, we have

Ra(G) > min{g,(n = )
for n even, and
Ro(G) > m'm{E;¥3 + 2142 (n — 1)tey

for n odd.

The following two lemmas will be used in the proof.
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Lemma 4.3 Let uv be a leaf of a graph G. When —% < <0, we have
Ra(G) = Ra(G = uv) 2 (n— 1)!1% — (n = 2)'*°,

Proof. Let d(u) = 1. Ifd(v) = 1, then Ry(G)—R,(G—uv) =1 > (n—1)'""*~(n-2)1He.
Therefore, we may assume that d(v) > 2. Denote by S, the sum of the weights of the
edges, other than uv, incident with the vertex v. Then

Ro(G) = Ra(G — wv) = d(v)* + 8, (1 - M;g;)nl)a) ’

Since S, < (d(v) — 1)}d(v)*, we have

Ro(G) = Ra(G = uv) 2 d(v)* + (d(v) ~ 1)d(v)" (1 B ('d%#)
= d(v)"*® - (dv) ~ )"
2 (n - l)l-)-a e (TL s 2)1+a'
1

Lemma 4.4 Let uv be an edge of mazimum weight in a graph G. When —1 < a <0,
we have

R (G — uv) < Ru(G).

Proof. Here we assume min{d(u),d(v)} > 2, otherwise, from Lemma 4.3 we can get
the proof directly. Denote by S, and S, respectively the sum of weights of the edges
incident with the vertex u and v. Then, we have

Sy < (d(u) — 1)(d(u)d(v))* and S, < (d(v) — 1)(d(u)d(v))>.
So,
Ra(G) — Ra(G - uv)

= ey + 5. (1- H=) v, (1 - -1

> () {1+t - 0 (1 - )+ awy - (1 - A0

> (d(u)d(v))” {l + (d(u) — 1) (1 - (i(%w_)___]l);%> + (d(v) —~ 1) (1 = M)}
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= (@) (d(w) ~ 5 - VDD 1) + o) - 5~ VAT 1))
> 0.

|

Now we turn to the proof of our theorem by applying induction on n + m. From

Lemma 4.4 we can delete the edges with maximum weights in a graph until all of them

are leaves. So we can assume that the maximum weight edges in G are leaves. Let uw
be one of such leaves.

If G contains no stubs, then G — uv has only one isolated vertex. We assume that
for smaller values of n4+m the inequality R,(G) > (n — 1)'** holds. Then

Ra(G) > RolG —wv) + (n — 1) = (n— )1 > (n — 1)+,
We can see that only if G is a star the value of R, for —} < & < 0 is equal to (n—1)'*®,

since the equality holds in the inequality of Lemma 4.3 only if d(v) = 1.

If G contains k stubs, from the above result we have that
Ra(G) = k + (n — 2k — 1)!*e,

with equality if and only if G is a graph composed of k stubs and a (n — 2k — 1)-
star. We denote k + (n — 2k — 1)+ by @Qn(k). So we only need to determine
min{Qn(k),k=10,1,2,..., %]}

When 1+ (n — 3)* < (n— 1)+, since the function f(z) = 2'+* — (z — 2)"*® for
-1 < a < 0is strictly decreasing in the interval {2, +00), we have that

Q2.(0) > Q.(1) > ... > Q"([E;_ZJ)

So, we have that min{Q,(k),k =0,1,2,. ., L%zj} = Qn(["—_—f"j)

When 1+ (n - 3)'*® > {n~1)"*°, we distinct the following two cases:
1. If there exists an integer ¢ smaller than n such that 1+ (i — 3)'® < (5 —1)'te,

we have that

n—2

Qn(0) € Qu(1) ... 2 Qu(p) 2 Qu(p+1)... 2 Qufl 5—1)
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for some p < 4. So, min{@Qn(k), k= 0,1,2, .., [ 52|} = min{Q.(0), Q.(L %52 ))}-

2. If there exists no integer ¢ smaller than n such that 14 (2 — 3}'*e < (i — 1),

we have that
Qu(0) < Qul) <. < Qu( 252
So, min{Qn(k),k =0,1,2,..., %3]} = Qa(0).

By now we have finished the proof of Theorem 4.2. We also note that @n(25%)
corresponds to the graph composed of 2 stubs for n even, @.(25%) corresponds to the
graph composed of "f‘";-i stubs and a 2-star for n odd, and Qn(O) corresponds to the
(n — 1)-star. 1

N

Because the complete graph has the maximum value for both R,% and Ry, this
naturally suggests us that for all & such that ,% < a < 0, the complete graph has the
maximum value of R,. So we get the following theorem.

Theorem 4.5 Let G be a graph of order n, containing no isolated verter. When
—% <o < 0, we have

_ 1420
i s e
2
with equality if and only if G is a complete graph.

Proof. 1t follows directly from the inequalities that

d(u W) pip 1)t
I L e e Y

el uveE ueV 2 2

From the above proof we can see that only if all the vertices in G have degree n — 1,

Le., G is a complete graph, G has the maximum value of R, for —% <a< 1

Case Ill. -1 <o < w%.

Theorem 4.6 Let G be a graph of order n, conteining no isolated vertex. When
~l<a< Au, we have

n
n < =
<G8 5

for n even, with equality if and only if G s a forest composed of § stubs.
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Proof. Tt is clear that R,(G) < Ry(G) if @ < b and the maximum value of R_% is 3.
So we have maz{R.(G)} < 2. Since we know that the graph composed of ’%-stubs
has the value of R, equal to %, we have that maz{R4(G)} = % when n is even and
-l<acx —%. So all the possible graphs with the maximum value of R, must be
among the graphs whose values of Rv% are §. By checking, we can find that only the

forest composed of § stubs has the value of R, equal to § for -1 < a < —%. 1

Although we have examined the values of Ro(G) for =1 < a < —§ for many graphs,
we cannot find the common properties for graphs that have the maximum value of R,

when n is odd. We also find that it is very complicated to determine the minimum value.

Case IV. o < —1.

Theorem 4.7 Let G be a graph of order m, containing no isolated vertez. When
o < —1, we have

- 1+2a
M & R&(G) £ 1.2'

for n even, and
_ 1+2a _
Lt 21) < Ra(G) € 5 S yaie
forn odd, with left equality if and only if G is a complete graph, and with right equality
if and only if G is a forest composed of § stubs for n even, and a forest composed of
"%3 stubs and a 2-star for n odd.

We can prove the latter part of the theorem in the same way as in the casc for
a=-1.

Lemma 4.8 Let uv be an edge of minimum weight in a graph G such that uv is not a
leaf. When o < —1, we have

Ro(G — uv) > R.(G).

Proef. Denote by S, the sum of weights of the edges, other than wuv, incident with
the vertex w, and S, the sum of weights of the edges, other than uv, incident with the

vertex . Then we have

5 g div) -1 and S, > d(u) -

S _ou) -1
U7 (d(w)d(u)) e T (dlv)d(w))



164

So we have
R_y{G —uv) = B (C)
> (d(w)d()*(d(w) - 1) ((1 f ) - 1)
+ (d(w)d@)(do) - 1) ((1 e 1) - (dw)d(w)°
> (d(u)d(v)*)(d() — 1) (1 = aﬁ - 1)

+ () ) - 1) (1= g = 1) = (d)d(w)*

= (d(u)d(v))*(-2a = 1) > 0.

1

Just like the case for & = —1 we can obtain that the value of R, for a < —1 gets

the maximum if and only if G is a forest composed of 3 stubs for n even, or a forest

composed of "TJ stubs and a 2-star for n odd. So, the right-hand part of Theorem 4.7
is proved.

Now we prove the left-hand part of Theorem 4.7. Since o < —1, we have
1 i 1 = 1
2(n—1)"ed(u)™ * 2(n—1)7ed(v)™ = (d(u)d(v))™

20,
~ - .
RolB) = 2, g 2 2 Fn = 1) -odiar e
n(n —1)
= 2(_7!_ l) -2a’

The last formula is the value of R, for the complete graph, and from the above

proof we know that only if G is a complete graph, Ro(G) for &« < —1 has the minimum
value a
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5 Concluding remarks

In order to give a clear picture, we use the following table to summarize our main

results.

a min max

10, c0) 2 (n even) and BT
223 4 21+ (n odd)

(-1,0) min{(n — 1)'*e, 2 - ikl
(n even) and 232 +
21 (n odd)}

(-1,-3) 2 (n even)

—1 2(:2-1) [3}
(~00, 1) = L 2 (n even) and
n

73 4+ 21+ (n odd)

There are two natural questions for further study along this line. As one can see
that for the interval (—1, — %) there are one and a half blank places in the above table.
So, the first question is to fill in the blank places of the table completely. Since in this
paper we deal with general graphs, the second question is to consider some classes of

interesting graphs, such as connected graphs, trees, chemical trees, ctc.
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