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Abstract

Let G be a simple connected graph of order n. The connectivity index R,(G) of a graph
G is the sum of the weights (d(u)d(v))® of all edges uv of G, where a is a real number
(a # 0), and d(u) denotes the degree of the vertex u. In this paper, we present some new
bounds for the connectivity index of a graph G in terms of the eigenvalues of the Laplacian
matrix or adjacency matrix of the graph G, from which we can get some known results.

1. Introduction

The connectivity index of an organic molecule whose molecular graph is G is defined (see
[5, 12]) as
Ra(G) = 3 _(d(uw)d(v))"
u,v
where d(u) denotes the degree of the vertex u of the molecular graph G, where the summation
goes over all pairs of adjacent vertices of G and where « (o # 0) is a pertinently chosen
exponent. In 1975, Randié introduced the respective structure-descriptor i [12] for o = -

-

(which he called the branching inder. and now also called the Randié index) in his study of
alkanes. The Randi¢ index has been closely correlated with inany chemical properties (see [117).
However. other choices of o were also considered, and the exponent « was treated (see {2, 3, 13])
as an adjustable paramcter, chosen so as 1o optimize the correlation between R, and some
selected class ol organic compounds. Tn particular, when ordering isometric alkanes with regard
to Ltheir connectivity indices one necds to take into aceonnt that there exist pairs of isomers

whose R, -values coincide for all o (o £ 0) (sec [8]).
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Let G = (V, 2) be a simple graph with moedges and vertex sel {vy, vy, -- - u, b For any two
vertices vy, v; € V(G) with 1 < j, we will use the symbol i ~ j to denote the edge wv;. For
v; € V, the degree of vy, written by d;, is the number of edges incident with v;.

Let A{G) be the adjacency matrix of G and D(G) = diag(d,,dy,...,dy) be the diagonal
matrix of vertex degrees. The Laplacian matrix of G is L(G) = D(G) — A(G). Clearly, L(G) is
a real symmetric matrix. From this fact and Gersgorin’s Theorem, it follows that its eigenvalues
are nonnegative real numbers. The largest eigenvalue of a matrix M is denoted by A (M),
while for a graph G, we will use A;{G) to denote A(L(G)), 7 = 1,2,...,n and assume that
M(G) 2 X(G) > -+ > A(G) = A(G) = 0. We also use p{(G) to denote the largest
eigenvalue of A(G). When G is connected, A(G) is irreducible and so by Perron-Frobenins
Theorem, p(G) is simple.

Chemical applications of the eigenvaiues of the adjacency matrix are well known and are
described in many textbooks and review articles (for a recent review, containing an extensive
bibliography, see [4]). Laplacian eigenvalues found chemical applications only relatively recently:
for details and further references see [6, 7, 15]. The main chemical applications of Laplacian
cigenvalues are in the theory of the Wiener and Kirchhoff indices, and resistance distance 7, 13]
and in the theory of photoelectron spectra and ionization potentials of alkanes [6]. So far, no
connection between Laplacian eigenvalues and the connectivity index has been reported.

The purpose of this work is to find bounds for the values of R,(G). These bounds involve
the eigenvalues of the Laplacian matrix or adjacency matrix of a graph G.

2. Bounds Involving the Eigenvalues of the Laplacian Matrix

Let G be a simple connected graph and L(G) = D(G) — A(G) be the Laplacian matrix of G.
It is well known that A, (G) = 0 with eigenvector e = (1,1,---,1)T and A,_1(G) > 0 by G being
connected. Since L(G) is symmetric, by the Rayleigh-Ritz Theorem (see for example [10]), we
have

T
. z' L(G)z
Ane = f —a—
K I(G) J:J_lcr,lx#(.l 2Tz (1)
and o
. L G‘ ar
M(G) = sup 4)—1 (2)
#0 T
Now we intraduce the graph invariant & as
L (Z"l» ’ln]!
k= o cemiEl i
; s " 5)

By the Canchy-Schwarz inequality. k> 0 and & = 0 iFand only if o, = d; Tor 1 <4 ) 20,
Theorem 1. Lel G b a simple conmected graph of order . Then

| ”" 2004l k T . ! - 26 i1
;)Zn'j i :z-,\|((-)~_~ff,.((|]iizdl -
=] [i=2 ]

An 1 (G). (n

[

~

wlriere beoos the graph mrearmnt. Morcover, B, (67) = 18 ‘ r/:‘" N tend k=0 if and only o]
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Proof. If G is an s-regular graph of order n, then R, (G) = %sz“ Fland k=0 by an cle-
mentary calenlation. Therefore the inegualities (4) hold. Conversely. if R (G) = % Iyt
then & = 0 and thus G is a regular graph obviously.

So in the following we assume that G is not regular.

Set d = (df,dy,--,d$)? and 0 = __.;nnﬁ Denote z = fe +d. Then = # 0 by G being

not regular and z L e. A simple calculation shows that 27z = k > 0. On the other hand, since
L(G)e =0, T L(Q)z = dT L(G)d. Note that

d"L(G)d

n
J](D—A)d: Zd'iza+l _2211?(!(;

i=1 inj
n
= Y d*' - 2R.(G),
i=1

where i ~ j runs over all the edges of G. Thus by (1) and (2), we have

=T L(@)z

An-1(G) <
1( ) Tl

< Al(G)

and (4) follows immediately. N

" n 2
Since k = 3. d?" - L—Z—:‘?ﬁ)— >0and A\,—(G) > 0if G is connected, we have the following
s
two corolla:ie;.

Corollary 2. Let G be a simple connected graph of order n end « be a real number with
a #0. Then
En afl
Ra(G) < 53"
with equality if and only if G 1is a regular graph.
Corollary 3. Let G be a simple connected graph of order n. Then
n
R_%(G) < 3
with equality if and only if G is a requler graph.

Corollary 4. Let G be a sinple non-reqular graph of order n and « be a real number with
a #0. Then

n n 2 -
R (G) 2 i (Z oLy, (Z r) - ude")
i=]

i=1 =l

with equelity of G is the star.

Proof.  Since Ay < s, by Theorem 1, we have R, (G) = 5370 7 = S Thins
o " 2 u
Ra(C) 2 5 (L{d,‘"*' + (ZJ’,') - ,,L,ff“) ;
i inl el
HG = KNy, then we canasswme Lhal o) =00 = 1ods =0 = o, = 1. Henee

i,!;"‘ by (}jt) : “idf"

T2}
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it

(=Lt m=1)" ") p =14 (= 1)) ==L+ (n— 1))
2(n - 1) = 2R,(G).

i

]
3. Bounds Involving the Eigenvalues of the Adjacency Matrix
Let A(G) be the adjacency matrix of graph G and p(G) the largest eigenvalue of A(G).
Theorem 5. Let G be a stmple graph of order n. Then
l n
Ro(G) < 5p(G) D _di* (5)

i=1
with equality if G is a regular graph.

Proof.  Note that A(G) is symmetric. By the Rayleigh-Ritz Theorem (see for example
[10]), we have

T
2(G) = sup z f_‘ﬁf}:ﬂ_ (6)
Set y = (d$,d3,---,d3)T. Then
yly=3 d*
iz

and i
y"A(G)y = 2Ra(G).

Thus by (6), we have

Ro(G) < 30(0) 3 .

If G is an s-regular graph, then R, (G) = }5?**! by an elementary calculation. On the other

hand, p(G) = 5 if G is s-regular. Thus the equality (5) holds. .
In {9], Hofmeister showed that p(G) 2 /% 27, &%, with equality if and only if G is either

a regular comnected graph or a semiregular connected bipartite graph. Therefore we have

n
Z n’? < np?(@). (7)
=1

By Themew 5 and (7). we have the following corollary:

Corollary 6. Let G be a simple graph of order v, Then
. LRI
1 (G) < 2 pYG). (3)
willy cquality if G oas o vegrdar connected graph,

Remark 7. For a graph (7= (Vo) witlesize s Bollobis and Fredios [1] prove that

B 111}
1’ - m(‘ Ll ) 1
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The bounds (8) and (9) are incomparable: for example. when ¢ = Ka o« the upper bonud (8)
isn! /16 and better than (9); however, when G = K| -, 2 > 10, the upper bound (9) is hetter
than (8).

Let G be a graph with n vertices and m edges. Denote
bla) = 27 nm' e
Obviously, b(a)b(—a) = m?. Then Corollary 6 can be generalized to the following result.
Theorem 8. Let G = (V, E) be a graph with n vertices and m edges. Then
Ra(G) 2 b(e)p™(G)
Jor =1 <a <0, and
Ra(G) < b(a)p™(G)
Jor0< @ < 1.

Proof. For e = 1, the result follows by Corollary 6. Therefore in the following proof, we
may assume that & # 1. Suppose first that 0 < a < landset f=1—-a, s =1/a, t =1/5
Then 1/s + 1/t = 1. By Hoélder’s inequality and Corollary 6, we have

Ra(G) = Y (didj)*-1°

i~y

o) ()’

R (G)m? < ()™ (G).

A

On the other hand, by the Cauchy-Schwartz inequality, for e # 0, we have

m = Z(d:dj)nlz(dxdj)_n“
- 1/2 12
< (Z(d,-d,)“) (Z(dzdj)“)
i i~
= RYVGIRA(G).

That is,
R (CYR-a(G) = m?.

Therefore. if =1 < o < 0, Lhen

R > I’m_‘ " bler)b(—av)

= blo) ¥ (G
P 7 ey T Mele TG,
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