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Abstract: A coronoid system is a benzenoid system with a hole, ie., a
non-hexagonal internal face. Several relations between the coefficients of the
permanental and characteristic polynomials of benzenoid hydrocarbons were
recently established [1]. In this note we investigate relations between the

coefficients of the permanental and characteristic polynomials of coronoid
hydrocarbons.

INTRODUCTION
The adjacency matrix , A = (a;;), of a chemical graph 7 of n vertices is a matrix of order
n consisting of 0’s and 1's; where a;; = 1 if vertices ¢ and j are adjacent, and a;; = 0

otherwise. The characteristic polynomial of the chemical graph G is, by definition [2-4 |

#(G) = ¢(G,A) = det(Al — A) (1)
where I is the unit matrix of order n.
The characteristic polynomial can be expressed in coefficient form

MG, A) =3 apAt (2)
k=0
The permanental polynomial is similarly defined as

7(G) = (G, A) = per{A - A) 3)
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and, in parallel to Eq.(2), we write the permanental polynomial in the coefficient form

n
(G, A) = 3 beA 4
k=0

In earlier computer-aided studies, several relations between the coefficients of the perma-
nental and characteristic polynomials of benzenoid hydrocarbons and fullerenes were ob-
served [5-6]. The general validity of these empirically discovered regularities were demon-
strated in [1].
A coronoid system [7-8] is a benzenoid system with a “hole” which consists of at least two
hexagons. A coronoid system G and the benzenoid system B from which G is obtained
are depicted in Fig.1. Coronoid systems are the graph representations of the skeletons of
coronoid hydrocarbons as well as benzneoid systems are the graph representations of the
skeletons of benzenoid hydrocarbons.

G B
Fig. 1 A coronoid system G and the corresponding benzenoid system B.

In this note we establish some relations between the coefficients of the permanental and
characteristic polynomials of coronoid hydrocarbons.

PRELIMINARIES

A Sachs graph S in a molecular graph G is a subgraph of G in which all components are
isolated edges and Jor cycles containing at least three vertices. By means of the well-
known Sachs theorem (9] the coefficients ay and by can be computed from the structure
of the molecular graph G. Let P(S) be the number of components of the Sachs graph S
in G, and ¢(S) the number of its cyclic components. Then one has [1,10]

ax = (-1 )
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be = (~1)F 5 299 (6)

Note that the molecular graphs of benzenoid hydrocarbons and coronoid hydrocarbons
are bipartite graphs. A bipartite graph possesses no odd-membered cycles, thus no Sachs
graphs with odd vertices exist in molecular graphs. Consequently, all odd coefficients
in both ¢(G) and #(G) are equal to zero. Furthermore, the even coefficients of ¢(G)
alternate in sign, whereas all even coefficients of #(G) are non-negative:

(-D*as >0; by >0  forall k>0.

A cycle contained in the molecular graph G is said to be a (4{)—cycle if its size is 4{ for
some integer [; i.e., it contains 4 vertices. A (4l+2)—cycle can be defined in a similar way.
By comparing the right-hand sides of Egs.(5) and (6), one can see that az = (—1)kby
holds provided the numbers of the components of all (2k)-vertex Sachs graphs of G have
the same parity. If there exists a (4{)-cycle C in G, then there are two (41)-vertex Sachs
graphs, say S and S, , where S| is just the (4l)—cycle C (P(S)) = 1, an odd number);
whereas S, instead of the (4{)-cycle has the 2/ isolated edges contained in C (P(S,) = 2!,
an even number). Thus S; and S, contribute with opposite signs in formula (5) and they
subtract from each other; whereas in formula (6) S, and S, contribute with the same
sign and they add. Therefore, ay < by (Note that both ay and by have the same sign:
positive }.

Lemma 1 Let & be a benzenoid or coronoid system. If g is the size of its shortest
(4l)-cycle, then k = /2 is the smallest value for which inequality (—1)%az < by holds,
ie :

ap = (=1)*by  for k=0,1,2,---,¢/2 — 1 (7)

and
Gy < by (8)
Proof. As mentioned above, if G possesses a (4{)-cycle with 41 = q, we have ay < by,
ie, ag < b, Now we prove that Eq. 7 holds. As ¢ is the size of its shortest (4)-cycle,
there is no (4l)-cycle for 4l < ¢. Let S* be a 2k-vertex Sachs graph, where 2k < q.
Suppose that S* possesses u cycles and v isolated edges, i.c., the number of components
of §* is u + v. The size of these cycles are 4i, + 2,4l, + 2,413 + 2,---,4l, + 2. Then
% =4(l, + 1+ -+ 1) + 2u + 2v. Therefore, u+v =k — 2(4; + L + - +1,), which
means that the number of the components of S* has the same parity as that of k. In

other words, all 2k-vertex Sachs graphs with 2k < ¢ have either even or odd number of
components. Consequently, Eq. 7 holds.

Lemma 2 Let G be a benzenoid or coronoid system. If k* is the smallest value for
which inequality (-~1)Fas < by holds, then g = 2k" is the size of the shortest (4!)-cycle
inG.

Proof.  Since (—1)*aax = by for k < k*, there is no (4l)-cycle in G with 1l < 2k*. Now
we prove that there is a (4l)-cycle in G with 41 = 2k*, namely, ¢ = 2k* is the size of the
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shortest (4)-cycle in G. By contradiction. If there is no (4l)-cycle in G with 4l = 2k",
then as mentioned in the proof of Lemma 1, (—1)*ag;- = byg-, contradicting that k* sat-
isfies the inequality (—1)*azx < bax -

As a direct consequence of the above two lemmas, we have:

Lemma 3 Let G be a benzenoid or coronoid system. Then positive integer k is the
smallest value for which the inequality (”l)kﬂ.zk < by holds if and only if positive integer
g = 2k is the size of the shortest (4)-cycle in G.

The known results about the relations between the coefficients of the characteristic and
permanental polynomials are as follows:

Theorem 4[1] If G is the molecular graph of a cata-condensed benzenoid hydrocarbon,
then the following property holds:

Property* : age = (=1)*bye for all k=0,1,2,---.

Theorem 5(1] If G is the molecular graph of a planar peri-condensed benzenoid hy-
drocarbon, then ag, = (—1)%by for k = 0,1,2,3,4,5; and a5 = by — 4n;, where n; is the
number of internal vertices of G.

PERI-CONDENSED CORONOID HYDROCARBONS

From now on we confine ourselves to coronoid systems. Let G be a coronoid system. By
C; and C, we denote the inner and the outer perimeters of G, respectively. The size of
C; and C, are denoted by |Ci| and |C,|, respectively. For planar peri-condensed coronoid
svstems (i.e. coronoid systems possessing internal vertices), we have the following.

Theorem 6 If G is the molecular graph of a planar peri-condensed coronoid hydrocar-
bon, then ag = (—1)%by for k = 0,1,2,3,4,5; and ayg = bz — 4(n; + 1), where n; is the
number of internal vertices of G and ¢ is determined by

t= 1, ifEC;|:12

2, if|Ci=10
Proof. It is clear that each internal vertex in G corresponds to a 12-cycle which is the
shortest (41)-cycle in G. By Lemma 1, ay = (—=1)%bay for k = 0,1,2,3,4,5; and a5 < bpa.
If |Ci} > 12, there are exactly n; 12-cycles in G. Hence ayg = byy — dny. If C; is itsell a
12-cycle, there are (n; + 1) 12-cycles in G and thus a;p = bz — 4(n; + 1). In the case C;is
a 10-cycle, there are two additional 12-cycles which do not depend on any internal vertex
of G {cf. Fig.2). Therefore, ajp = byy — 4(n; + 2).

{ 0, if|Cci|>12
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Fig. 2 A peri-condensed coronoid system G with two 12—cycles
which do not depend on any internal vertex of G.

CATA-CONDENSED CORONOID HYDROCARBONS

Cata-condensed coronoid systems are also called primitive coronoids [7]. To our sur-
prise, the situation for cata-condensed coronoid systems is much more complicated than
that of cata-condensed benzenoid systems. Unlike cata-condensed benzenoid systems,
there is no cata-condensed coronoid system satisfying Property *: age = (—1)%by for all
£=0,1,2,:--.

Let G be a coronoid system. Recall that the dual graph [11] D(G) of G is a graph in
which each vertex corresponds to one hexagon of G, and two vertices are connected by
an edge when the two corresponding hexagons share an edge. A cata-condensed coronoid
system G and the corresponding dual graph D(G) are depicted in Fig.3

Fig. 3 A cata-condensed coronoid system and the corresponding dual graph.

It is evident that in D(G) there are three different kinds of angles: angles of 120°, angles
of 180° and angles of 240°. With the help of dual graphs, some basic properties for cata-
tondensed coronoid systems are found.

Lemma 7 Let (G be a cata-condensed coronoid system. Then we have

1. the number of angles of 120° in D(G) is larger than that of angles of 240° in D(G)
by six;

2. the size of C, is larger than that of C; by twelve, i.e., |C,| - |Ci| = 12;

3. if Cj is a (40)-cycle for some integer I, then C, is a (40')-cycle for some integer I';

moreover, if C; is a (4 + 2)-cycle for some integer {, then C, is a (4’ + 2)-cycle for
some integer ['.
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Proof. Suppose that the numbers of angles of 120°, 240” and 180° in D(G) are z,y and
z, respectively. If we disregard the angles of 1807, then by the inner-angle-sum rule for
polygons in geometry, we have:
120° x 7+ 240° x y = 180° x (z 4+ y — 2)
Therefore,
T—y=86, (9)

which means that the number of angles of 120° is larger than that of angles of 240° by six
(cf. Fig. 3).

It is not difficult to see that a hexagon of G contributes one, two and three edges, re-
spectively, to C; if its corresponding angle in D(G) is an angle of 120°,180° and 240°,
respectively (cf. Fig.3). Then we have

|Ci| =2+ 3y + 22 (10
In an analogous way, we reach at
|Col =3z +y + 22 (1)
Combining Egs. (10) and (11), one has
|Cal = 1Ci| = 2(z — y) (12)
Insarting Eq. (9) into Eq(12), we have 7
|Col = 1Cs| =2x6=12 (13)
Now assume that C; is a (4{}-cycle, i.e. |Ci| = 4l. Then by Eq. (13}, |C,| = |Ci| +12=

4(! + 3), which implies that C, is a (4!')-cycle, where ' = | + 3. Similarly, if C; is s
(41 + 2)-cycle, then C, is a (4f' + 2)-cycle, where ' = | + 3.

Fig. 4  An illustration for the proof of Lemma 8.
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Lemma 8 Let G be a cata-condensed coronoid system. If D(G) possesses an angle of
180°, then there is a cycle of size (|C;| + 2) in G.

Proof. Let hexagon A of G correspond to an angle of 180° in D(GY), vy, va, ..., Us be the
six vertices of A . Denote by C* ( marked by heavy lines in Fig. 4 ) the cycle obtained
from C; by deleting vertex v, and adding vertices vy, vs and vg. Then C* is a cycle in G
of size |C*| = |Ci] — 1+ 3 =|Ci| + 2.

Lemma 9 Let G be a cata-condensed coronoid system. Then there is a cycle of size
(IC:| +2) in G.

Proof. If there is neither angle of 180°, nor angle of 240° in D(G), G is the benzenoid
system depicted in Fig. 5, contradicting that G is a coronoid system. Therefore,there is

Fig. 5 The only system whose dual graph possesses angles of 120° only.

at least an angle of 180° or an angle of 240° in D(G). If there is an angle of 180° in D(G),
by Lemma 8, there is a cycle with size (|C;|+2) in G. Now suppose that there is no angle
of 180°%, but at least an angle of 240° in D(G). As mentioned in Lemma 7, there are more
angles of 120° than angles of 240° in D(G). Therefore, there are two neighboring angles
in D(G) with one being of 120° and the other being of 240°. In a similar way, a cycle of
size (|Ci| +2) can be found in G (marked by heavy lines in Fig. 6).

Fig. 6  An illustration for the proof of Lemma 9.

Theorem 10 Let G be a cata-condensed coronoid system. Then G does not satisfy
Property *: ase = (—1)¥bay for all k =0,1,2,---.

Proof. It suffices to prove that there is a (4{)-cycle in G. If |G| = 4!, the inner perime-
ter Cy is itself a 4l-cycle, and there is nothing to prove. Now suppose |Ci| = 4l 4 2. By
Lemma 7, |Co] = 4l' + 2. Thus neither C; nor C, is a dl-cycle, and we need to find a
cycle in G of size 41*, which is neither €y, nor €,. By Lemma 9, there is a cycle of size
[Ci]| +2= (4l +2)+2=4(l + 1), which is a (4i")-cycle with [* = [+ 1.

Now a natural question emerges: what is the smallest value of k for which the inequality
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(—1)*ag < by holds? or equally, what is the size of the shortest (4/)—cycle? One can
check that the two cata-condensed coronoid systems G, and G» depicted in Fig.7 have
the same size of inner perimeter: |C;| = 52, and in each of D(G)) and D(G>) there are
three angles of 180°, ten angles of 240° and sixteen angles of 120°. But in G, the shortest
(41)-cycle is a 44-cycle, whereas in G, the shortest (4l)-cycle is a 52-cycle. This is mainly
caused by the way in which the angles of 240° appear in the sequence of inner angles of
D(G)).

Fig. 7 Two cata-condensed coronoid systems with the same size of
inner perimeter, but different size of the shortest (4{)-cycles.

Definition 11  Suppose that angles of 180° are disregarded. Let a;, aji1,-- -, Givx, Givint
be k + 2(k > 2) consecutive angles in D(G). If a; and a;4x4, are angles of 120°, and all
the angles a;1, @iy, - -, Gipx are angles of 240°, then {aii1, @iy, -+, Gisx ) is said to bea
normal set of angles of 240° of size k(> 2) (cf. Fig.8).

Fig. 8 A normal set of angles of 240° with size k = 4
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Lemma 12 Let G be a cata-condensed coronoid system. If D(G) possesses a normal
set of angles of 240° of size k, then there is a cycle in G of size (JC;| — 2(k — 1)).

Proof. Suppose that D(G) possesses a normal set of angles of 240° of size k. Then
there is a series of angles a;, @1, -+, Gigk, Qi+ in D(G), where a; and a;4x41 are angles
of 120, and all the angles a;+1,Giy2, - -, @iyx are angles of 240°. Let the corresponding
hexagons of G be A;, Aiyy, -+, Aiyi and Ajyryr. Note that when normal sets of angles of
240° are mentioned, angles of 180° are disregarded. Now suppose that there are altogether
z angles of 180° among the angles a;, @iy, - -+, @isx and a;prqq (cf. Fig. 8, z = 3). Bear
inmind that a hexagon of G which corresponds to an angle of 240° in D(G) contributes
three edges to C; and one edge to C,, respectively; whereas a hexagon of G contributes
two edges to each of C; and C, if it corresponds to an angle of 180° in D(G). Therefore,
the size of the segment of C; between A;y, and A, (marked by heavy lines in Fig. 8)
equals to 3k + 2z , whereas the size of the segment, of C, between A;y, and Ay, (cf. Fig.
8) equals to k + 2z. Now one can obtain a cycle C* from C; by deleting the segment of
C; between A;y) and A;.x; and adding the segment of C, between A, and A;,; and the
two edges shared by A; and A4y, Aipr and A x4, respectively. It is evident that the
size of C* is |C*] = |Ci| — [(3k + 22) — (k + 22)] + 2 = |Cy| — 2(k - 1).

Lemma 13 Let G be a cata-condensed coronoid system. If D(G) possesses a normal
set of angles of 240° of size k, then there is a cycle in G of size (|Ci| — 2(r — 1)), where
2<r <k

Proof. Suppose that {a;41,@is2, **,ai+x} is a normal set of angles of 240° of size k.
Evidently, {@it1,@is2,-*+,aier(2 < 7 < k)} is a subset of {ai41, 42,7+, @igx}. In an
analogous way as in the proof of Lemma 12 (cf. Fig. 9, where k = 4,7 = 3), there is a
cycle in G of size (|C;] — 2(r — 1)), where 2 < r < k.

Fig. 9 An illustration for the proof of Lemma 13

Corollary 14  Let (& be a cata-condensed coronoid system. If D(G) possesses { normal

sets of angles of 240°, and the corresponding size are ky, kq, -« -, ki1, k¢; then there is a
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cycle in G of size 7 satisfying (|Ci| ~ T2, 2(k — 1)) < 7 < (|Ci| - 2).
Proof. Directly from lemmas 12 and 13.

It is known that the length of the outer perimeter C, is larger than that of the inner
perimeter C; by twelve (Lemma 7). Therefore, if we want to search the shortest (41}
cycles in G, it is better to start from C;. By the above corollary, whether or not we can
find a (41)-cycle shorter than C; in G depends on whether or not there is any normal set
of angles of 240° in D(G). We have the following theorems:

Theorem 15 Let G be a cata-condensed coronoid system. Suppose that |C;| = du+2.
The size ¢ of the shortest (41)-cycle in G is determined by

|G = =i, 2(k; — 1), if there are normal sets of angles of 240°,
and 3, 2(k; — 1) = 41 + 2
g=2% |Ci|— Tt 2(k; — 1) +2, if there are normal sets of angles of 240°,
and T8, 2(k; — 1) = 4l
|Ci| + 2, if there is no normal set of angles of 240°,

Theorem 16 Let G be a cata-condensed coronoid system. Suppose that |Ci| = 4u.
Then the size ¢ of the shortest (41)-cycle in G is is determined by

|Ci| — i 2(ki — 1), if there are normal sets of angles of 240°,
and Ti_ 2(ki— 1) =4l
g=1q |G| -5, 2(ki = 1) + 2, if there are normal sets of angles of 240°,
and 0, 2k — 1) = 4l + 2
|Cil, if there is no normal set of angles of 240°

The following theorems are the direct corollaries of Lemma 3 and the above two theorems:

Theorem 17 Let G be a cata-condensed coronoid system. Suppose that |C;| = 4u +2.
Then

age = (—1)¥by. for £=0,1,2,---,¢/2 -1

and
a, < b,
q is determined by
|Ci| = 28, 2(ki — 1), if there are normal sets of angles of 240°,
and 0, 2(k; — 1) =4l + 2
g=< |Gl -t 2k - 1)+ 2, if there are normal sets of angles of 2407,
and 8 2(k; — 1) = 4l
|Cil + 2, if there is no normal set of angles of 2409,

Theorem 18 Let G be a cata-condensed coronoid system. Suppose that |C;| = du.
Then

tlgk=('*1)kbgk for k=0,],2,"',q/2—]
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and
a, < by
q is determined by
|Ci| = &5, 2(k; — 1), if there are normal sets of angles of 240°,
and 4, 2(k; — 1) = 4l
g=13 |Ci| =i, 2(k; ~ 1) + 2, if there are normal sets of angles of 240°,
and T, 2k — 1) = 4l + 2
|Cil, if there is no normal set of angles of 240°
REMARK

By Theorems 17 and 18, the smallest value k for which the inequality (—1)%a < by
holds is known. It is interesting that the difference between by and (—1)*ay is often very
large. This is caused by the fact that the number of the shortest (4l)—cycles in G is very
large. Let us look at the cata-condensed coronoid system depicted in Fig. 10. The inner
perimeter C; is a 68—cycle, and there is no normal set of angles of 240°. By Theorem 16,
C; is one of the shortest (4{)-cycle in G. One can check that there are 53 different ways for
acycle of G to go through A to B with the same length. Similarly, there are 53 different
ways for a cycle of G to go through C to D with the same length . Consequently, there
are at least 53 x 53 = 2809 different 68-cycles in G.

Fig. 10 A cata-condensed coronoid system



148

References

[1] 1.Gutman and G.G.Cash, Relations between the permanental and characteristic poly-
nomials of fullerenes and benzenoid hydrocarbons, MATCH Commun. Math. Compul.
Chem. 45 (2002) 55-70.

[2] 1.Gutman and O.E.Polansky, Mathematical Concepts in Organic Chemistry, Springer-
Verlag, Berlin, 1986.

[3] D.Bonchev and D.H.Rouvray (Eds.), Chemical Graph Theory - Introduction and Fun-
damentals, Gordon & Breach, New York, 1991.

[4] N.Trinajsti¢, Chemical Graph Theory, Second Edition, CRC Press, Boca Raton, 1992.

[5] G.G.Cash, The permanental polynomial, J. Chem. Inf. Comput. Sci. 40 (2000) 1203-
1206.

(6] G.G.Cash, The permanental polynomials of smaller fullerenes, J. Chem. Inf. Comput.
Sci. 40 (2000) 1207-1209.

[7] 5.J.Cyvin, J.Brunvoll, B.N.Cyvin, Theory of Coronoid Hydrocarbons, Lecture Notes
in Chemistry 54, Springer-Verlag(1991).

[8] S.J.Cyvin, J.Brunvoll, Chen Rong Si, B.N.Cyvin, Zhang Fu Ji, Theory of Coronoid
Hydrocarbons I, Lecture Notes in Chemaistry 62, Springer-Verlag(1994).

[9] H.Sachs, Beziechungen zwischen den in einem Graphen entaltenen Kreisen und seinem
charakteristischen Polynom, Publ. Math. (Debrecen) 11 (1964) 119-134.

(10] D.Kasum, N.Trinajsti¢ and I.Gutman, Chemical graph theory 11T , On the perma-
nental polynomial, Croat. Chem. Acta 54(1981) 321-328.

[11] D.Bonchev and A.T.Balaban, Topological centric coding and nomenclature of poly-
cyclic hydrocarbons -1-condensed benzenoid systems (polyhexes, fusenes), J. Chem.
Inf. Comput. Ser. 21 (1981) 223-234.



