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Abstract

This study extends relationships previously demonstrated (Gutman, MATCH Commun.
Math. Comput. Chem. 47 (2003) 133-140) between the ordinary and Laplacian characteristic
polynomials to the ordinary and Laplacian permanental polynomials. Various formulas relating
the ordinary and Laplacian permanental polynomials are evaluated for their efficiency as
algorithms for calculating the Laplacian permanental polynomials of chemical graphs.
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INTRODUCTION

Let G be a graph on n vertices and A(G) be its adjacency matrix. Further, let D(G) be a
diagonal matrix with elements equal to the vertex degrees of G, with the vertices taken in the
same order as in A(G). Then, L(G) = D{G) - A(G) is the Laplacian matrix of G. In some earlier
literature, this matrix is called the matrix of admittance, a term taken from the theory of electrical

networks [1]. In the same context, the term Kirchhoff matrix is sometimes encountered [2].

Adopting and extending notation previously used [3-5], we call the characteristic
pelynomials of these matrices ¢~ (G) = @ " (G,A) = det[A 1, - A(G)] and y " (G) =y (G, A) =
det[A 7, - L(G)], and the permanental polynomials ¢ * (G} = ¢ ' (G, A) = per[A I, - A(G)) and
v (Gy=vy " (G, A)=per[A I, - L{G)]. We express the characteristic polynomials in coefficient

form, as in [5]:

$TGA=3,a; ()M TG A=Y (- e (G) A" (1)
J i
and by extension,
O (GN=2p;(G)A" ; yH (G A=Y (- g(G) A" @
i J

In this notation, all the coefficient ¢; and g; are non-negative, while the a; and p; may take

on any integer value. As noted in [5], an immediate consequence of (1) is

D" (G~A) =, c;(GY A", @
J
By extension,
D"y (G-A) = F,q;(G) A" )
i
In the discussion below, we will describe subgraphs of G in the following way. Let k
distinct vertices of & be Vry s Vryaeees Yy o Then the (# — k)-vertex subgraph obtained by deleting

these vertices from G is denoted by Gr\ sy, More specifically, G, is the (n ~ 1)-vertex
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subgraph obtained from G by deleting the vertex v,, G, is the (n — 2)-vertex subgraph obtained
by deleting v, and v, etc. Additionally, we denote by G[A,] the graph G which has been
modified by adding a loop of weight 4, to vertex v,, and, more generally, by G{h, hy, hs,..., hi}
the graph obtained by adding a loop of weight ky, to each vertex vy, k= 1,2,3,...,n. This notation

may represent any general graph, since some or all of the A may be zero.
An established result [5] in this notation is

¢ (Gl D=9~ (@) ~h ¢7(G,). 5)
The characteristic polynomial of the graph containing the loop is the difference between the two
characteristic pelynomials on the right, because of the alteration of sign in expanding the
determinant. The equivalent expression for permanental polynomials is the sum

97 (Glh D =¢"(G)+h.¢"(G,). (6)
By applying another iteration to (6), one obtains
9T (Glh b D) =¢*(GlA 1)+ hs 7 (G, D) = 87 (G) + A" (G} + s {97 (Gy) +h, 97 (G, ),
which rearranges to

0" (Glhy b )=0" (G)+ 1, 0" (G )+ he 0¥ (Go) + by g 9 (G, )- Q)

Since there is no alteration of sign in expanding the permanent, there is no alteration of signs in
Eq. (7). Additional iterations can be made to take into account loops on additional vertices. For

loops on all n vertices, the expression becomes

8% (Gl by D=0 (G)+ Y, Dby by $° (G ) ®)

k=1 r<<r,

Note that the sccond summation in Eq. (8) is over all possible combinations of k vertices.
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RESULTS AND DISCUSSION

By combining Eq. (4) with the definitions of the permanental polynomials for the

adjacency and Laplacian matrices, we obtain

D"y (G~A)=(-1)" per-11, — D(G) + A(G))

=per[Al, — A(G)+ D(G)]

=per{d 1, — AG*)]=¢T (G*,A),

where A(G*) = A(G) — D(G), the adjacency matrix of some graph G*. A(G) and A(G*) differ
only in their diagonal elements, these being all zero in A(G) and equal to the negative vertex
degrees, -dy, -ds,...,-d,, in A(G*). Thus, 4(G*) may be viewed as the adjacency matrix of a
graph obtained from G by adding to each vertex v, a loop of weight -d,. In the notaticn

developed above, G* = G[-d|, -dh,...,-d,), and consequently

[ ¥ (G[_dl ’_dQ yerns—dp ], A)=(~ 1)" 'V+ (G:“l)-

®

Combining Eqs. (8) and (9), we have an expression relating the permanental polynomial of the

Laplacian matrix of G to the sum of permanental polynomials of all vertex-deleted subgraphs of

G:

DY G-D=0" G+ Y, Td, d, $*(G,..,)

k=1 r <<,
In view of the formula (2) for ¢*(G,1), Eq. (10) may be transformed into
)" (G = Z (p;(G)+ Z 2y, dy pji(Gy..

k=l r <<,

which, in view of (4), implies

j
9 (D=p(G)+ Y, Dd, -d, p; (G, ...

k=1r <<

Note that Egs. (12) and (10) are fully equivalent.

(10)

b (1n

(12)



133

If m is the number of edges in G, then po(G) = 1, pi(G) = 0, p2(G) = m, and the sum of
vertex degrees is 2m. Forj =0, 1, 2, from Eq. (12) we obtain:

qo(G) = py(G) =1
4(6)= PG+ S (G, =0+ 3y = 2m

42(G) = p2(G)+ X, d, a|(G,)+ X d, dy ap(G, ) =m+0+ 3 d, d;

r<s r<s
=m+[-;-22d, d, -}:(d,)z]=m+~;(2m)2 -3 2,y
r s r r

=2m* +m —lZZ(d, )2
r

Except for signs, these results are analogous to those for characteristic polynomials, reported in

in [5]. Note, however, that §2(G) — ¢2(G) = 2m. The fact that ¢,(G) = 2m was also noticed by
Merris [6].

Since all graphs possess a zero Laplacian eigenvalue [2], ¢.(G) = 0. It has also long been
known that ¢,.,(G)/n equals the number of spanning trees in G. No similar statements apply to
4(G) and ¢,..1(G), so formulas for ¢,(G) and g,..1(G) , analogous to those in 5] for ¢,(G) and

¢r1(G), based on these equalities cannot be sct forth.

ALGORITHMS

While numerous chemical applications of the characteristic polynomial of A(G) have
been published (for a recent survey and an exhaustive bibliography see [7]), only in the last
decade or so have a few papers on chemical applications of the characteristic polynomial of L(G)
begun to appear [2,8-18]. Similarly, and somewhat more recently, chemical applications of the
permanental polynomial of A(G) began to appear [19-22]. The permanental polynomial of L{G),
on the other hand, as received scant attention in the mathematics literature [6,23-27], and no
specific applications to chemical graphs seem to have appeared at all. Merris [26] explicitly

identified the difficulty in computing w * (G,}) as a reason for the paucity of studics regarding its
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properties. In the present study, we explored mathematical relationships between ¢ (G andy
*(G,X). Specifically, we modified the recently published [5] relationships between ¢¢ ™ (G,A) and
v (G,}). Now, we examine the utility of these relationships as computer algorithms for

calculating w * (G,1) for graphs of chemical interest.

The fastest published algorithm for computing ¢ * (G,A) appears to be the one described
by Cash in [21], which modified an approach by Rosenfeld and Gutman [4] based on applying
differential operators to symbolic functions. A drawback to this algorithin is that it requires
software capable of manipulating the symbolic functions, specifically, capable of taking partial
derivatives with respect to symbolic variables without first assigning numerical values to the
variables. Instead, the procedure generates a polynomial in A by sequentially replacing a series
of symbolic variables with the indelerminate A at various points in the calculation. Using Eq. (9)
above, it is straightforward to replace the symbolic variables at cach step with & — d, instead of &
for each vertex v,. The reversal of sign, y * (G,~A) in (9), is eliminated by using d, - A in place of

A—d,. Thus, the method described in [22] calculates y * (G,1) as casily as ¢ * (G A).

An earlier and slower method for calculating ¢ " (G,1L), also published by Cash {19],
basically evaluates Eq. (8) directly. In this algorithm, the problem of evaluating all 2" possible
vertex-deleted subgraphs is addressed by taking advantage of the sparseness of A(G). All 2"
subgraphs are evaluated, but the evaluation tree is pruned as soon as it can be known that the
contribution from a particular branch will be zero. The algorithm actually finds the permanent of
[A4(G) + 1], keeping count of the number of diagonal elements a;; in each summation. Thus, a
contribuiton to per[A(G) + [] that contains & diagonal elements contributes to the coefficient of
inep " (G L), Unlike the algorithm in (22}, the one in [19] performs only integer arithmetic and
can be programmed in an ordinary language such as C or FORTRAN. One could alter the
algorithm to keep track of the product of the various terms of the form X - d, that contributed to
each summation rather than simply keep a count. Each nonzero sum would contribute to several
coefficicnts in y " (G,)), but the various possible contributions could be calculated ahead of time
and saved to disk, obviating the need to calculate them each time they are necded. Based on
results in [19] and [22], this approach would be slower using current hardware and compilers,
but it may not be inherently slower. A great increase in speed could probably be realized, for

example, by coding the algorithm in assembler language.
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Another consideration in calculating yw ' (G,A) is that, even for modest values of n (20, for
example), the coefficients can greatly exceed the capacity of the 32-bit integer registers normally
found in desktop computers. There arc several possible solutions to this problem, e. g., using a
machine with 64-bit integer registers, storing the coefficients as double-precision floating-point
variables (providing 52 unsigned bits), and using one of the widely available software
workarounds for various programming languages. Some commercial software packages also

retain all digits in integer calculations.

CONCLUSION

One of the present authors [5] recently identified mathematical relationships between the
characteristic polynomials of the adjacency and Laplacian matrices of graphs. We have shown
that most, but not all, of these relationships can be modified to apply to the permanental
polynomials as well. Further, we evaluated the suitability of two such relationships as computer
algorithms for application to chemical graphs. Virtually nothing about the properties of the
Laplacian permanental polynomials of chemical graphs has appeared in the literature to date, and
this is at least in part due to the difficulty of computing this polynomial for graphs large enough
to be of chemical interest. We envision that the availability of the mathematical formulas and

computer algorithms described here will help to facilitate these calculations.
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