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Abstract

The resistance distance ri; between two vertices v; and v; of a (connected, molecu-
lar) graph G is equal to the resistance between the respective two nodes of an electric
network, constructed so as to correspond to G, such that the resistance of any edge
is unity. The matrix R = ||r;;]] is the resistance matrix of G'. Let L be the Laplacian
matrix of . In this work we obtain some new relations between R and L. Using
these relations we give a new proof of the formula: ri; = det L(z, 7)/ det L[1,1] for
i# 3. Here L|t,7] and L(1,7) are the matrices obtained from L by deleting its i-th
row and j-th column, and by deleting its i-th and j-th rows and columns, respectively.
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INTRODUCTION

The ordinary distance between two vertices v; and v; of a (connected) graph G,
denoted by d;;, is defined as the length (= number of edges) of a shortest path
that connects v; and v; {1]. The vertex-distance concept found numerous chemical
applications; for details see the reviews (2, 3] and the recent papers [4-12]. In order to
examine other possible metrics in (molecular) graphs the resistance distance, denoted
by ri;, has been put forward [13]. This distance is conceived as follows. To the graph
G an electric network A (G) is associated, obtained so that each edge of & is replaced
by a resistor of unit resistance. The nodes of A{G) correspond to the vertices of
G . The resistance distance r;; of the vertices v; and v; of G is then defined as the
effective resistance between the respective two nodes of N(G). The quantities r;; are
computed by methods of the theory of resistive electric networks (based on Ohm's
and Kirchhoff’s laws). For acyclic graphs r;; = d;; and therefore the resistance-
distance-concept is primarily of interest in the case of cycle-containing (molecular)
graphs.

The resistance-distance concept was much studied [13-28]. The matrix whese
(1,7)-entry is r,; is called the resistance matriz (of the respective graph G), and will
be denoted by R. Evidently, R is symmetric, has a zero diagonal, and its order
coincides with the number n of vertices of G.

Within the theory of electric networks the standard method to compute the re-
sistance matrix [29-31] is via the so-called generalized inverse L1 of the Laplacian

matrix of the underlying graph G:

= (L')“ + ([‘i)n - (Li)u - (Lt)Ji . (n

Recall that the Laplacian matrix is singular and, therefore, has no usual inverse.
More on the generalized inverse of a (singular) matrix can be found elsewhere [16,32-
34)-

Let G be a graph and let its vertices be labeled by vy, vs,...,v,. The Laplacian

matrix of 7, denoted by [ is a square malrix of order n whose (1, j)-entry is defined
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by
-1 if 1 # j and the vertices v; and v, are adjacent
L= 0 if i # j and the vertices v; and v; are not adjacent
d; ifi=j

where d; is the degree (= number of first neighbors) of the vertex v;.

By J we denote the square matrix of order n whose all elements are unity. Then
for all connected graphs (with two or more vertices) the matrix L+ % J is non-singular,
its inverse

[ A~
X =llaill = (142 )
exists, and (24]
ti =i + T35 — 2%i; .
Thus the matrix R = ||r;;|| can be written as
R = diag[zi1, 222, -, Tan) J + J diag[ziy, T2z, .. Tan] =2 X . 2

In this work we obtain some new relations, connecting the resistance and the
Laplacian matrices. By means of these relations we give a new proof of a known

formula [18, 28]:
_ det L3, j)
"= Get LR, ) )
fori # j. Here L[i,5] and L(4,j) are the matrices obtained from the matrix L by
deleting its i-th row and j-th column, and by deleting its i-th and j-th rows and

columns, respectively.

NEW RELATIONS BETWEEN THE MATRICES it AND L

We first prove the following

Theorem 1. If L and R are the Laplacian and resistance malrices, respectively, of

a connected graph G, then

LRL=-21I. ()

Proof. Since X = |lzg|l = (L+LJ) " and LJ = JL =0, it follows that [ X =

XL=1I- }IJ, where [ is the unit matrix of order n. Thus we have

!,XL=(!~£J) =k
n
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By Eq. (2) we further obtain

LRL

L (diag[zu,xn,. s ,.7.‘,"‘} J + J diag[.Zn,In, e ,Im,] = ZX)L
-2LXL

Identity (4) is a useful and interesting result, in spite of the fact that its proof is
simple. In what follows we outline some of its applications.

Let M be any matrix of order n, and let T'r(M) denote its trace. In [15] it is
proven (as Theorem B) that Tr(L M L R) = —2Tr(M L).

We now offer a generalization of this result.

Corollary 1.1. The matrices L M LR and —2M L have the same characteristic

polynomial.

Proof. It is sufficient to observe that the matrix L M L R = L (M L R) has the same
characteristic polynomial as M L R L = (M L R) L, and to apply Eq. (4). O

Corollary 1.2. The matrices L R and diag[¥2,. .., —2,0] are similar.

Proof. We have (L R)? = LRL R = —2L R and therefore the minimal polynomial
of L Ris A* + 2), which has no multiple roots. Therefore L R is similar to a diagonal
matrix whose diagonal elements are —2 and/or 0. Since R is non-singular [17], the

rank of L Risn — 1. Thus L R and diag[-2,...,~2,0] are similar. O
In what follows by &;; we denote the usual Kronecker delta, defined as

[ ifi=j
‘5"*'_{0 fifg.

Corollary 1.3. Let for1=1,2,...,n

;

]
g Sork L+ by
k=1

Then

1
I+ 3 RL = Jdiaglwy,ws,...,wn] .
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Proof. By Corollary 1.1, the rank of the matrix Q@ = I + %R L is 1. Hence any row

of this matrix is a multiple of the first row. Since
1
(1+5RL) 7=y

all rows of @ are the same. Therefore Q = J diag[wy,ws,...,w,]. O

PROOF OF FORMULA (3)

Bearing in mind Eq. (1), the fact that L' is symmetric [34], and J L = 0 we have

RL = (diag[(Ln,(LYz2s- -, (Ewn] J
J diag{(LN11, (EN)az, .-, (LN)a] = 2L7) L

J dfﬂy[(L')u, (Lr)'n, g (L‘)m.] L—2LYL.

o5

il

Because of [34]
s A WS
n

we arrive at

RL = J diagl(L,(Eazs- -, (EVna) L4 2 J =21

This implies
2 = 2
S riLig =Y (LMex Lig + = — 265
k=1 k=1 n
which holds for 4,7 = 1,2,...,n. Setting in (5) 1 = ¢ we get
n n 2
Soru Ly = 3o (LYkk Liy + = — 26,
k=t k=1 n

which subtracted from (5) yields

NgE

(r,-k = T,k) ij = 2(5,,‘ o=, Ji;)
k

and which holds for 4,5,t =1,2,...,n. Fori,t = 1,2,...,n we thus obtain

(Eln,n)) (ra = ra, 2 ~ Ty oy Ty — 1‘4,“_1)'
= 2 (5n e 5.!,542 = 8igy- s NI 5...-—:)‘

= (rin =7} (Lars Luzy- ooy Lnmt)'
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Now, set 7 = n,¢ = | into (6) and assume that n # 1. Then
(T‘nl,‘-"nI — 712+ 3yTnn-1 — Tl.n—l)‘
is the solution of the system (7) of linear equations in the variables zy,z2,..., 25 1!
(L[r,n))! (21, %20+ s Znea) = 2(1,0,- ., 00 + 71w (Lnty L2y v oy L) - (7)
In order to obtain r;, we have by Cramer’s rule

det(L{n,n]) rin

2 det L(1,n) + (—1)" det(L{n, 1)) r1n

2 det L(1,n) — det(L[n,n]) rin .
Here we used the fact that
det(L[n, 1)) = (=1)""" det(L[n,n})*

because
2 L =0
k=1

foi =1, 250575

Since det(L[n,n]})' = det L[n,n], we conclude that
rin = det L(1,n)/ det L[n,n] . (8)

Because the labeling of vertices of the graph G was arbitrary, whichever result
holds for the vertex pair vy, v, must hold for any other vertex pair v;, v;. Thus
formula (8) implies the validity of the identity (3) for any ¢,7, 1 £ 4,5 < n, provided

t # 7. In other words, we proved the (earlier known [18])

Theorem 2. Ey. (3) holds for any connected graph G of ordern > 1.
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