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Abstract

The energy of a graph is the sum of the absolule values of its eigen-
values. It is used in chemistry to approximate the total m-electron energy
of molecules. In this paper we present upper bounds for the energy of a
graph in terms of its degree sequence, and characterize those maximal en-

ergy graphs and maximal energy bipartite graphs.
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Given a graph G with n vertices, define the energy of G, denoted E(G),
by
E(G) =) M,
i=]

where Ay > Ay > -+ > A, are the eigenvalues of G. This concept was intro-
duced in the subject of chemistry by 1. Gutman and is intensively studied
since it can be used to approximate the total m-electron of a molecule (see
[1, 2], for example). Recently, Koolen and Moulton [6, 7] showed that for a
graph G with n vertices and m edges

2m 4m?

E(G)§T+\/(n— D (2m- ) (1)
and for a bipartite graph with n vertices and m edges
4m 8m?

E(G)STﬂ/(ﬂ—i') (2m- 2. (2)

and characterized those graphs for which these bounds are best possible (see
{5}, where the above bounds were published for the first time). Then for a

graph G with n vertices

E(G) £ 5(1+ VA)

and for a bipartite graph G with n vertices

E(G) < Z=(VE+ V),
and those graphs for which these bounds are best possible can be character-
ized [6, 7].

A graph G is semiregular bipartite (of degrees ry and rp) if it is bipartite
and each vertex in the same part of bipartition has the same degree (each
vertex in one part of bipartition has degree r; and each vertex in the other
part of bipartition has degree ry). Clearly a regular bipartite graph is a
semiregular bipartite graph (r; = r3).

Among the known lower bounds for A; is the following [8]:

Yo qud?

A! 2 =1
n
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and equality holds if and only if G is a regular graph or a semiregular
bipartite graph, where d,,d>,...,d, is the degree sequence of G.

A strongly regular graph G with parameters (n,k,p,0) is a k-regular
graph on n vertices, each pair of adjacent vertices has p common neighbours
and each pair of non-adjacent vertices has ¢ common neighbours. If o >
1 and G is non-complete, then the eigenvalues of G are k,s and ¢t with
multiplicities 1,7, and m;, where s,t are the roots of z% + (¢ — p)z +
(¢ = k) = 0, and m, and m, can be determined by m, + m; = n — 1 and
k+mgs+met = 0.

We first give an upper bound for the energy of a graph with n vertices,
m edges and degree sequence dy,d,,. .., d,, and characterize those graphs
for which this bound is best possible.

Theorem 1 If G is a graph with n vertices, m edges and degree sequence
dl,dg,...,dn, then

E(G)g\f%ﬁ+J(n—i) (Zm—-?_;n'd‘z-). (3)

Moreover, equalily in (3) holds if and enly if G is either 3K, (n = 2m), K,
(m =n(n—1)/2), a non-complete connected strongly regular graph with two
non-trivial eigenvalues both with abosulate value \/(Zm - (2 /(n-1), or
nl(; (m=0).

Proof. Recall that [8]

MB / «':ld?‘
n

By the Cauchy-Schwartz inequality,

2N S (=) 3TN = f(n - 1)(2m - 2.
=2 i=2
Hence

E(G) < A+ /(n - 1)(2m - AY).
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Note that the function F(z) = ¢+ /[n — 1)(2m — z?) decreases for \/2m/n
<z € v/2m, and /Zm/n < J(DR, d?)/n € Ay, we see that F()\) <
F'( ( }‘=1dl?)/n). This proves (3).

It is easy to check that if G is one of the graphs given in the second part
of the theorem, then equality in (3) holds.

Conversely, if equality in (3) holds, then by the above argument, we
see that A, = \/(_;’:l a'?_}/_n It follows that G is a regular graph or
a semiregular bipartite graph. If G is regualr and m > 0, then A, =
V(D d})/n = 2m/n, and hence G is either 3 K3, Ky, or a non-complete
connected strongly regular graph with two non-trivial eigenvalues both with
abosulate value \/(Qm - (2)2)/(n - 1) [6]; If m = 0, then G is nk,. Now
suppose G is a semiregular bipartite graph. Since equality holds in the

Cauchy-Schwartz inequality given above, we have /(Y0 ,d?)/n = A\ =

=2 = /(2m = M)/(n - 1), from which we have 7., d? = 2m, and hence

d=1or0for1<i<n. Thus G is either 3K, or nk;. u]

Remark 1 Note that /(Tr, d¥)/n > 2m/n (since 4m? = (Tl di)? <
nTh, d?) and F(z) = z 4 /(n — 1)(2m — 22) decreases for /2m/n < z <

V2m. We have
E(G) < F ( (> )/ | < Plm/n).
=1

E(G) < F(2m/n) is (1).
To investigate the energy of a bipartite graph, we need the following

lemmma.

Lemma 1 Let G be a connected bipartite graph with n vertices and m edges,

and let dy,da, ..., d, be the degree sequence of G. Then
&2+ di -+ d2 < mn,

equalily holds if and only if G is a complete bipartite graph.
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Proof. Let E be the edge set of G. For any edge uv of G, d,, +d, < n.
Then 3-8 d? = ¥ ,ueg(du + dy) < mn. The equality holds if and only if
dy + d, = n for any edge uv of G, i.e., G is complete bipartite. @]

Recall that a 2-(v, k, A)-design is a collection of k-subsets or blocks of a
set of v points, such that each 2-set of the points lies in exactly A blocks.
It is known that bk(k — 1) = Av(v — 1). If b = v, then the design is called
symmetric. The incidence matriz of a 2-(v, k, A)-design is a v x b matrix
B = [bij] where b;; = 1 if the i-th point is contained in the j-th block, and
bi; = 0 otherwise. The incidence graph of a design is defined to be the graph

O B

BT 0"
The incidence graph of a 2-(v, k, A)-design with v > k > A > 0 (and then by
Fisher’s inequality, b > v) has eigenvalues v/rk, /7 — A, 0, —/7 = X, =Tk

with multiplicities 1,v— 1,b — v,v — 1 and 1, where r = bk/v is the number

with adjacency matrix

of blocks containing a given point (for more details, see [3]). The incidence
graph of a 2-(v, k, A)-design is a semiregular bipartite graph of degrees r and
k with v + b vertices and vr(= bk) edges.

Next we give an upper bound for the energy of a bpartite graph with n
vertices, m edges and degree sequence dy,ds,...,d,, and characterize those

graphs for which this bound is best possible.

Theorem 2 If G is a bipartite graph with n > 2 vertices, m edges and

degree sequence dy,do, ..., d,, then

E(G) 52\/M+\](n—2) (2m—%ﬁ). (4)

n

Morecver, cquality in (4) holds if and only if G is either 313 (n = 2m),
Kypnor withl <r < n/2 (m=r(n-r)), the incidence graph of a symmetric
2-(v, k, A)-design with v > k, k=2m/n and A = k{k - 1)/(v = 1) (n = 2v),
or ni{y (m =10).
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Proof. Recall that (8]

n_ 42
N i T
n

By the Cauchy-Schwartz inequality,

ni:l [l < 4j(n—2) § A= /(n-2)(2m - 2)}).
E(G) € 2\ 4+ v/(n - 2)(2m — 223).

Note that the function H(z) = 2z + /{n - 2)(2m — 22?) decreases for
Vv2mfn € z < /m, and /2m/n < VIEL d])/n < Ay, we see that

HM) < H (,/(z;;, d?)/n)A Tiis proves (3).

It is easy to check that if G is one of the graphs given in the second part

Hence

of the theorem, then equality in (4) holds.
Conversely, if equality in (4) holds, then by the above argument, we

see that A} = /(% d?)/n. It follows that G is a semiregular bipartite

graph. Since equality holds in the Cauchy-Schwartz inequality given above,
we have [Aj] = /(2m — 2A3)/(n —2) for 2 < 7 < n — 1. Hence we have
the following possibilities: either G has two eigenvalues with equal absolute
values and hence G' = mk,, G has three distinct eigenvalues, i.e., A; = 0
for 2 < i < n-1,and hence (Y7o, d*)/n = A} = m and by Lemma 1
G = K, n- with 1 <r < nf2, G has four distinct eigenvalues in which case
G is regular (since 0 is not an eigenvalue and G is a semiregular bipartite
graph) and connected, A; = 2m/n > \/(2m - 2X})/(n —2) and hence G is
the incidence graph of a symmetric 2-(v, 2m/n, A)-design [4], or G = nl;
(m=0). (]

Remark 2 Asin Remark 1, note that /(Y1 , d?)/n > 2m/n and H(z) =
2z 4+ /(n — 2)(2m — 227%) decreases for /2m/n < z < \/m. For a bipartite

graph G, we have

E(G) < H ( (id?)/n) < H(m/n).
1=1
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E(G) < H(2m/n) is (2).

Remark 3 Let G is a bipartite graph with n > 2 vertices, m edges and
degree sequence dy,ds,...,d,, where n is odd. By the Cauchy-Schwartz
inequality (t = (n ~ 1)/2, A4y =0),

' t
2N E-D) D A=/t - 1)(m - 2.
i=2 i=2

Hence
E(G) € 2M1 +/(n — 3)(2m — 223).
There are two cases:
Case 1: (LR,d?)/n > 2m/(n - 1). Since the function I(z) = 2z +
V(1 = 3)(2m — 22%) decreases for \/2m/(n - 1) < z < /mand \/2m/(n - 1)

<D, d3)/n < A, we see that T(X) < I( ( }'=1d?)/n). This proves

E(G) < 2 ﬂ%ﬁ+\J(n—3)(2m-1%—‘#). )

It is not difficult to see that equality in (5) holds if G = K, ., with 1 <
r < nf2, or G is the incidence graph of a 2-(v, k, A)-design [3] with

k>AA= %%-:E%%(v+ 1) and n=2v + 1,

or G =nk,.
Case 2: (T, dB)/n < 2m/(n —1). Then 4m?/n? < (T2, d)?/n? <
2m/(n - 1) and hence 2m < n + 1. We claim that 2m # n + 1. Otherwise,
suppose 2m = n+1. Then ¥, d? < 2mn/(n—1) = n+2+2/(n—1), from
which we have 7| d? < n+2. It follows that cither Y0 d? = n4 1 = 2m
and hence d; < 1 for all ¢, which is impossible, or 7, d* = n+2 and hence

L, di(di — 1) = 1, which is also impossible since 3%, d;(d; — 1) is even.
Hence 2m # n 4 1. Then 2m < n— 1, E(G) < H(1) = 2m (which also
follows from {6, Theorem 2], and equality holds if G is the disjoint union of

mi(y and (n — 2m)K,| with 1 < m < n/2.



118

References

[1] T. Gutman and O. E. Polansky, Mathematical Concepts in Organic
Chemistry, Springer-Verlag, Berlin, 1986.

[2] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A.
Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics
and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.

[3] D. Cvetkovié¢, M. Doob and H. Sachs, Spectra of Graphs, 3rd edition,
Johann Ambrosius Barth, Heidelberg, 1995.

[4] M. Doob, Graphs with a small number of distinct eigenvalues, Ann. New
York Acad. Sci. 175 (1970) 104-110.

[5) J. H. Koolen, V. Moulton and I. Gutman, Improving the McCelland
inequality for total 7-electron energy, Chem. Phys. Lett. 320 (2000) 213-
216.

[6] J. H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math.
26 (2001) 47-52.

[7] J. H. Koolen and V. Moulton, Maximal energy bipartite graphs, Graphs
Combin. 19 (2003) 131-135.

[8] B. Zhou, On spectral radius of nonnegative matrices, Australasian J.
Combin. 22 (2000) 301-306.



