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Abstract

Considerable altention has been recently paid to thorn graphs
as chemical odels. Here, we consider, three classes of thorn
trees T* The recently introduced A-modified Wiener index ™1¥,,
Is a reasonable generalization of the well known Wiener index 1V,
as it fulfills basic requirements to model branching. The explicit
formulae are given to caleulate ™W', (T*) in terms of A-modified
Wiener indices of parent tree T for all three classes of thorn trees

"Dedicated to Professor Haruo Hosova who introduced the notion of topological
index 31 years ago and after that made a long lasting contributions to theory and
applications of topological indices.
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considered.  These formulae represent a generalization of Gut-
man’s results on ¥ for the same classes of thorn trees discussed
here.

1 Introduction

The connectivity of atoms in a molecule is conveniently described by its
molecular graph, G = G (M) {1,2]. The set of vertices V = V (G) =
{v1.0g, .., v, }, correspond to atoms, and set of edges, £ = E(G) =
{er.€9,...,em}. to chemical bonds in molecule, where z and m stand
for cardinalities of Vand £, n = n(G) = |V (G)| and m = n(G) =
|E (G)|. The number of edges incident to a given vertex v, is called its
vertex degree and is denoted by v,. It corresponds to the valence of its
corresponding atom.

The information given by graph G could be compressed to a number,
so called molecular descriptor [3]. Of course, there is an infinite number
of ways to do this and only those descriptors which are able to corre-
late well with physical, chemical and biological properties of molecules
arc of interest to study. The particular descriptor Z was developed by
Hosoya 31 years ago [4] and named Topological index. Since then other
molecular descriptors as well are called topological indices. These in-
dices have found enormous application in QSPR (Quantitative Structure
Property Relationships) and QSAR (Quantitative Structure Activity Re-
lationships) and other studies, and for an overview reader is referred to
recent monograph |5].

The first and most studied topological index up to now is Wiener
index [6], 1" (G), which in Hosoya’s formulation is defined by (half of)
the sum of distances between all possible pairs of vertices in G However,
m the original paper of Wiener W = W (G)is defined by:

W= "nga(e) ngale). (1)

€
where ng, (¢). nga(e) are the numbers of vertices of G lying on two
sides of the edge eand summation goes over all edges of G. Note, that
definition (1) applies only Lo trees, i. e. to (connected) graphs possessing
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no eycles. Many chemical componnds like alkanes, alkenes and alkynes
are conveniently represented by trees.

In recent years, a new class of trees, so called thorn trees have been
studied 7,8 as a model to describe dendriners. Study of dendrimers
has become a very active interdisciplinary research arca which las an
enormous potential for applications ranging from optoelectronics, catal-
isys up to drug delivery. The classes of dendrimers which have arised a
special attention are fullerodendrimers, antibody-dendrimer conjugates,
dendryzimes, biodendrimers and similar,

The thorn graph G* = G* (p. ..., pa) of G is obtained by attaching p;
new vertices of degree 1 to the vertex v; of G, 1,2,...,m, and obviously
repetition of such a procedure is suited to model a dendritic growth.

For G being a tree 7. G* = T"is called a thorn iree and in the present
paper, we consider only torn trees, namely more specifically only the
following three classes of thorn trees:

Class 1. The thorn trees where an equal number p of vertices is added
to each vertex,i. e. py=po = ... =p, = p.

Class 2. The thorn trees where the number of added vertices to every
vertex equals its degree, i. e. p;=7v;,1=1,2,...,n.

Class 3. The thorn trees where to each vertex of T° so many vertices
are added to make it of a degree v, 1. e. py =v—1,, = 1.2, ... n, where
of course y > v,.1=1.2...,n

Recently, the original Wiener’s Definition 1 was generalized to [9]:

"Wy =Y lnga(e) a2l AER, (2)

and "Wy is called A-modified Wiener index. A special case for A = —1
was put forward by Nikoli¢ at al. It has been proven that ™'y, in parallel
with W™ = ™7, satisfies two basic requirements (described in [10]) to
represent a proper measure of branching.

Our main result is given in the next chapter and it presents the ex-
plicit formulae to calculate ™1V, in terms of A-modified Wiener indices
of original tree T with T* being thorn trees of Classes 1-3. The proof
for Class 1 is given in Chapter 3 and it shows that ™W, (7"} is a linear
function of ™1y (T) for any real value of A. The Chapters {-3 give the
proof for Classes 2-3. and show that then "W, (T*) is a linear function
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of indices "W, of T, = 0,1,..., A, where A is a natural number and
runs only over natural numbers and zero.

2 The Main Result

Our paper generalize the results of Gutman [7], i. e. his three Corollaries.
Corollary 1.1 of (7]
W(T = "W (T =@p+1)> W (M) +naphp+n-1), (3)
where T is a thorn graph of Class I, we generalize to
Theorem 1
TWL(T") = (p+ 1) "Wy (T) +np(np +n - 1)*, (4)
for any real A.
Corollary 1.2 of [7]
W(T) = ™W, (T)=9-W (D) +(n-1(3n-5). (5

where T is a thorn graph of Class 2, we generalize for A being a
natural number & to

Theoren 2

k

. kN s e : ke
MV (T = Z [( ,)9' (1-3n) " "W (T)| +(2n-2) (3n - 3)*
=0 L\
(6)
Qur final generalization concerns

Corollary 1.3 of [7]

W(TY = "W, (T =(y- 1) W)+ [(y-1Dn+ 1]2. (™)
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where T is a thorn graph of Class 3 and A is a natural number #,
and reads as

Theorem 3

& [T :
Wr) = Z[(.)(vmnz‘(m ~Dn+ W)+ (8)

1=0 :
F(y-2n+2) - ((v=Dn+1F

3 The A-Modified Wiener Index for Thorn
Trees of Class 1

After noting that

[n7ea(e) - nyen (e)}'\ =(p+ 1}2’\[71“ (e) - nre {e)])‘, for eache € E(T).

(9
We have
AW (T = Z [TlT-,l (e) - nr-» {e}}’\ (10)
ec B5(T")
= > Il npa@+ Y. [npale) nreate)
e 13(T) e€ B(T* \E(T)
= (p+1)° Z nya () npe (e}]A + Z [(np+nu—1)- l}A

€ E(T) e€ E(T* \E(T)
= (p+ P AW (D) +np: (np+n-1)",

The dependence between 11 (T*) and *17 (T) remains linear no mat-
ter what A we choose.

4 The A-Modified Wiener Index for Thorn
Trees of Class 2

Before proceeding, we shall need some technical results:
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Lemma 4 Let My be the following matriz:

00 00
phae| ¥ = B0 (11)
i O S

0 0 10

of the type (k + 1) x (k + 1). Its powers shift 1's downwards, and so i
s i-th power, 1 < 1 < k, the 1st column starfs wiih @ zeros, the 2nd

colummn unth (i + 1) zeros and so on:

00 000U
0 0000
a0 B 1L
0"~ 0000
00 1000
Obviously, M5*" is null-matrix.
Lemma 5 Let Mbe the following matrix
y 0 0 0
z y 0 0 .
M= 6 g . 3 (13)
0 0 =z y

of the type (k+ 1) x (k+ 1), and S be the column matrix with the first
entry equals z and other k entries equal zero:

e

0
SR [ (14)

0

Then il holds:
vtz
(e

AME.S = : § (15)
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Proof. Note that M = zMy + yI, where [ is the unit matrix of the
type (k+ 1) x (k + 1). Therefore,

k
. k ’
ME=3 (i)r’yk”ﬂ-f& (16)
=0
and by use of Lemma 4, one obtains:
e 0 0 0 0
Day* 0 0
M = M=t ¢ o0 o], a7
(s )2*y Mo T 0
o (k:)quy (‘:)ka-l v

and by multiplying this with S, we finally get equation (15). m

Lemma 6 IfT* is the thorn graph of Class 2 of the tree T, i. e. T* with
parameters p; =y, ¢ = 1.2, .., n, then "W (T*) and "W (T), 1 €1 < k
are related as

W (T)

k
1-3n 0 0 0 1
"W (T) ’
ipei 9 1-3n 0 0 0
YW(T") = 2 (T) ) i ‘ =2
: 0 0
: . e
SV (T) 0 0 } 1-3n 0
&

(20—~ 2) - (3n - 3)".
Proof. We have

(T = Z (ng- 1 (€) - nge (e))+ Z (g (€) - npe 5 (€))*
e€E(T) e E(T* \E(T)
(19)
Simple calculation shows that n.(T") = 3n - 2, n = n (T) ,and from here
it easily follows
T (npeale) npea(e) = (20 -2) (3n-3)*. (20
e€E(T*\E(T)

1$)
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It remains to prove that:

Y (e (e) mama(e) =

¢€E(T)
YR T r
e foslliy © W 2§ FF
Wi B fedly B8
W (T) i o .
- 0 i i

and prior to doing that, we shall prove:
nrea(e) = 3.np,(e) -1, foreachee E(T)
ny=2 (E’) = 3 Ty a (E) -1, foreache € K (T) :

Note that

S ) =2 (e () = 1)+ 1,

wENT, ) (e}
where v, {u} is the degree of vertex u in T, and so:
nr1(e) =3 -nri(e) -1, foreache e E(T).

The relation (23) is proved completely analogously.

1
0
e
4]
(22)
(23)
(29)
(25)

Now, we shall prove (21} by the induction on &. First, assume that

k= 1. We have

T

oy

s gi 1-3 0 0 0
Wy | - z 1i3” 0 3
T 0 0 9 1-3n

= -3 -1+9'W(=
= Z (1 =3(npy(e)+nrale)) +9 npy(e) - np(e))

e E(T)

= Y Bani(e)-1)-Barale) - 1)

e B2(77)

= Z (-1 (€) - npma(e)) .

eck(1)

0

Il

(26)



101

Now, let us prove the inductive step. Suppose that claim s true for each
k < ky and let us prove it for & = kg, Denote;

o i-8% o o © T [a
ay 9 1-3n 0 0
= , ) (27)
i 0 i s 0 :
g 0 0 9 1-23n 0
From the inductive hypothesis, it follows that:
k-1 ‘
Z (nr 1 () - np-2 (€)' = Z o - Z (nra(e) - nra(e))
e€E(T) i=0 e€E(TY)
(28)
We also have
(1-32 0 0 0 1°7[1]
9 1-3n 0 0 0
0 5% "n D A
. 0 0 9 1-3n | 0 |
[1—3n 0 0 0 ag |
9 1-3n 0 0 Qg
a 0 o0 :
L 0 0 9 1-3n | g |
(1 —3n)-ag
Sag + (1 - 3n)-a
= ‘ : (29)
L 9k + (1 - 3n) - oy
and so 1t remains to prove that
> (ngeale) npa(e) = (30)

e E(T)
k-1

= (1-3n)-ag-(n—-1)+ Z (9a; y + (1 = 3n) - a,) - Z (nra(e) - nra (€)'

i=1 cSE(T)
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i.e. that
s [ (@ @ = 0@ nrate) - ]
Sl 9 mra(e) nra(e) +(1-3n))
= (1-3n)-ap-(n—1)+
k]
' ((%i-—l +(1-3n) &) Z (g (€) - na (f))i) (31)
g £ B(T)

Note that

3 (G nra(@) = 13- nrale) = - (1 - 3m)] =

e€E(T)

(1=3n)- 3 ((3-neale) = 1)-(3-npa(e) = 1))

<€ E(T)

k=1
(1-3n)- (ﬂu “(n-1)+ Z (01- Z (nra(e) - nra (t’-))'}%l)
=1 e E(T)

Also, we have

I

S [ nzi () = 1) (3 nra(e) = 1) (rra () nrafe))] =

eCE(T)
k-1
- Z (a. : Z (noa(e) - nyo (e))”l)
i=0 cEE(T)
k X
= acrs Y (vrale)-nra(e) (33)
i=1 € E(T)

By multiplying relation (33) with 9 and summing the result with (32) .
we get (31). So, the claim is proved. m
By combining Lemimna 6 and Lemma 5, we get finally Theorem 2. This

is indeed a generalization of Corollary 1.2, because linear dependence is
preserved.
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5 The A-Modified Wiener Index for Thorn
Graphs of Class 3

Lemma 7 Let v be an integer with the property v 2 v, i = 1. ....n and
k € N be any integer. If T" is the thorn graph of Class 3, i. e. T" with
parameters p; = 7=, 1 = 1,...,n, then "W (T*) and'W (T), 1 < i < k,
are related as

?t:/% ' y 0 g 67" Fa
ey = w000

“W:(T) 0 0 (y-17° y 0

+H((r=2n+2) (G- Dn+1)" (34)

wherey = (y—1)n+ 1.
Proof. We have

W= Y (npeale) ara(@)+ Y. (ar-ale) nr-a(e).
e€E(T) e€E(T*N\E(T)
(35)
Simple calculation shows that n(T*) = (v - L)n+2, n = n(7), and
from here, it easily follows that:

S s (e nrale) = (1= Da+2) (7= D+ 1)

e€ E(TI\E(T)

(36)
It remains to prove that:

Y (urale) npaie) =
c€E(T)

WE T .

e ET) v, 0 0 0 1

Wi = 1 0 0 0

b 0 % & 0 :
(T 0 0 (-1 y 0
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Before proving the above we should prove that:
np-a(e) = (y—1)-npr;(e)+1, foreache € E(T) (38)
np-a(e) = (y—1)-npa(e) +1, foreach e € E(T), (39)

Note that

Y. (r-drle) =mrale) = (2 - (arale) -1 +1).  (40)

reNT ()

and so
np-y(e) =(y—1)-ngr1(e)+ 1, for each e € E(T) (41)

holds. The relation (39) can be proved completely analogously.
Now, we shall prove (37) by the induction on k. First, assume that
k = 1. We have

r

0147 ¢
lM’(I‘) Y 0 0 0 1
) (v-1)° 0 0 0
| Y v o] * | =
; 0 : w0 :
i} _1)?
KW (T) 0 0 (v=1)" ¥ 0

= n—1)-((y-Vn+1)+(y-12' W (T
S (= Do)+ na (e)) + 14 (3 = 1 gy () - s ()]

e€E(T)

= Y (v -nr(e)+1-[{v- 1) nrale) +1]
esE(T)

= 5 (ma(e) npale) (42)
eC B(T)

Now, let us prove the inductive step. Suppose that claim is true for
each & < ky and let us prove it for b = kg. Denote

k=1

ag y 0 0 0 1

a v -1PF 0 0

.1 _ (v ) b (43)
0 0
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From the inductive hypothesis, it follows that:

k-1
Z (ng= (€) -np 2 (€)' = ; (“' : Z (nra(e) - nya (e))') .

c€E(T) e E{T)
(44)
We also have:
y 0 0 01" 1]
(-1 y 0 0 0
0 0 :
| 0 0 (-7 y| 0
[ y 0 0 0 ] Qo i
G-y 0 0 ar |
a 0 e B :
[ 0 0 (-1 y] Lo
= 2?;-00
=1 rag+ Yy
- ( ) -G YV (45)
L (v = 1)% ooy +y -
50 it remains to prove that
Y (geate) npa (et =
c€E(T)
= yap-(n—-1)+
k-1 _
#® (("f ¥ i)Zflz——l + lj'ﬂn) # Z {ng () - nra2(e)) |(46)
i=1 cSE(T)

i.e. that
g || O3~ e @) £ )] Nt
Sl (G=1 nrale) nra(e) + (v - 1)n+1)

= y-ap-{n—-1)+

({(",‘ 1P iy +y- o) - Z (ny {€) - mpo (e))') . (47)

k
i e E(T)

+

i=1
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Note that

> [t =1 mrie) + 0 (v = 1) mg () + DI ((r = D+ 1) =

c€ E(T)
= ((v=1n+1)- > [[((”.’—1)'71'1',1(f’)+1)'((“.‘-1)‘”'1'\1 f.v)-HJ}""'}
ee (T}
k=1
=y lag =1+ > lai Y (naile) nrale)) || (48)
=1 ecB{T}

Also, we have

Z [!((7 = 1) npy(e) + 1) ((y = 1) (€) + DI nr (€) - noe (!’)]

e€B(T) i
k-1

= Z o - Z (ng.1 (e) - npa(e))™!
i=0 €€ B(T)
k -

= aicr- ) (nrale) - nra(e))’ (49)
i=1 € E(T)

By multiplying relation (49) with (y — 1)* and summing the result
with (48), we get {47). So, the claim is proved. =

By combining Lemma 7 and Lemma 5, we gel Theorem 3. This is
indeed a generalization of Corellary 1.3, because linear dependence is
preserved.

6 Conclusions

Special cases of thorn graphs have been already considered by Cayley [11]
and later by Polya [12], as means to proceed from hydrogen suppressed
to full molecular graphs. Recently, they have raised a renewed interest
in chemistry, e. g as a model to represent organic molecules [14] and
to describe dendrimers [8]. Here, we have studied three special classes of
thorn trees.

We have been able to derive explicit formulae for A-modified Winer
index, ™V, for these three special classes of thorn trees. For the Class I,
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the formula lincarly relates ™ W, (T*) with a single ™V, (1') of the parent
tree T°, and it holds for all real values of A. The formulae for Classes 2-3
give "W, (1) as a linear function of indices "W, (T), p = 0,1, ..., A, but
now the formulae hold only for A being a natural number. The above
results are formulated in three theorems which are a generalization of
analogous ones derived by Gutman for the Wiener index W of the thorn
graphs.

The above fact leads to the problem of deriving explicit formulae for
"Wy (T*) for real values of A, where T" is a thorn graph of Class 2 or
Class 3.

Although there is enormous proliferation of topological indices, the
A-modified Wiener indices considered here should be of chemical interest
as they satisfy the basic requirements imposed on an index to be of use in
modelling molecular branching. However, the ordering of molecules in-
duced by these novel indices changes with a change in value of A [13], what
gives a framework to model a variety of different properties of molecules,
but it remains an open question which A is the most suitable to model a
particular molecular property.
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