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Abstract

In contrast to the classical notion of distance as the length of a shortest
path between fwo vertices, the concept of resistance distance, introduced by
Klein and Randié, arises naturally from several different considerations and
is more emenable to mathematical treaiment. For a connected graph with n
vertices, the resistance malriz of the graph is defined to be the n x n matriz
with its (i, 7)-entry equal to the resistance distance between the i-th and the
J-th vertices. We obtain a formula for the inverse and the determinant of the
resistance matriz of a weighied graph, thereby generalizing some earlier work,

including that of Graham, Pollack, Lovdsz, Xiao and Guiman.

1 Introduction and Notation

The distance between two vertices in a graph is traditionally defined as the
length of a shortest path between the two vertices. In contrast to this no-
tion, the concept of resistance distance, introduced by Klein and Randié¢ 16}
arises naturally from several different considerations and is more amenable to
mathemnatical treatment. The concept has also been of interest in the chemical
literature, and in particular, an analog of the classical Wiener index based on
the resistance distance has heen proposed. We reier to [2, 4, 8, 11, 14, 18, 19]

for more information on the resistance distance and for additional references.
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For a connected graph G with n vertices, let I be the resistance matrix of
the graph, which is defined to be the n x n matrix with its (¢, j)-entry equal
to the resistance distance (to be defined later) between the ¢-th and the j-th
vertices. [t is well-known that when the graph is a tree, the resistance distance
reduces to the usual distance, namely the length of the (unique) path between
the two vertices. Thus R reduces to D, the distance matrix of a tree, an object
that has been studied in the literature. An early, remarkable result for the
distance matrix D of a tree on n vertices, due to Graham and Pollack |12],
asserts that the determinant of D equals (—1)""'(n — 1)2""?, and is thus a
function of only the number of vertices. In subsequent work, Graham and
Lovész (13] obtained a formula for D', among other results. Recently, the
formula was extended to a weighted tree [5].

In this paper we obtain a formula for the inverse of the resistance matrix of
a weighted graph, thereby generalizing the work in (13, 5]. A formula for the
determinant of the resistance matrix is then derived, and is shown to reduce
to the formula obtained by Xiao and Gutman [19] in the unweighted case.

We now introduce some notation. Let G = (V,E) be a graph with n
vertices, labelled {1,2,...,n}. We will assume that G is a weighted graph.
thus each edge of G is assigned a weight, which is a positive real number.
When the weights are all equal to 1, a weighted graph turns into an ordinary
{unweighted) graph.

The weight assigned to the edge (7, 7) will be denoted by w(z, j). The Lapla-
cian matrix L of G is an n x n matrix defined as follows. For i # j, the (¢, j)-
atigy if ¢
and j are adjacent. For i = 1,2,...,n, the (1,7)-entry of L is defined to make

entry of L is zero, if vertices 1 and j are not adjacent, while it is —

the i-th row sum equal to zero. Thus L is a singular matrix. We will assume
throughout that G is connected. Then L has rank n — 1. For basic properties
of the Laplacian, see [1, 9, 17).

If H is any generalized inverse of L. (i.e., LHL = L), then the resistance

distance between i and 7, denoted ry;, is given by 7i; = hy+ hyj — hyj — hji. The
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definition turns out to be insensitive to the choice of the generalized inverse

[2]. In particular, if L* = ((£5)) is the Moore-Penrose inverse of L. then
rg = Eh 4 8 - 20 (1

We refer to [3, 7, 10] for background material on generalized inverses, and in
particular, the Moore-Penrose inverse.

The matrix of resistance distances, given by R = ((r;;)) will be called the
resistance matrix of G.

We denote the n x n matrix with each entry 1 by J, where the order should
be clear from the context. Similarly the column vector of appropriate order,
with each entry equal to 1 is denoted by 1. The transpose of a matrix A will
be denoted by A’ as usual.

Since the null space of L is one-dimensional and is spanned by 1, the matrix
L+ LJ is invertible and, following the notation in [19], we set X = (L+ 1J)~".
Recall that LT = X — ;’;J and hence it follows from (1) that

Tij = Ty + Ti; — 22,‘.’. (2)

The formulation (2) indeed implies that R is a conditionally negative definite
matriz. (See [6], Chapter 4, and the references contained therein.) Since R also
has zero diagonal elements, it is in fact a classical distance matriz, in the sense
of Schoenberg, that is, there exist n points in an euclidean space such that ry;
is the squared euclidean distance between the z-th and the j-th points. for cach
1, 7. This observation puts the entire theory of distance matrices at our disposal
in the study of the resistance matrix. In particular, it immediately obtains that
R is nonsingular with exactly one positive cigenvalue, a fact recently observed
in Xiao and Gutman (18, 19] using an alternative approach. We will not pursue
the idea of viewing R as a classical distance matrix further in this paper.

Let X be the diagonal matrix with Z,;,Z2,..., T, along the diagonal.
Then by (2),

R=XJ+JX -2X. (3)
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If ¢ is a vertex of G, then n(i) will denote the set of vertices adjacent to .

Fori=1,2,...,n,let
#
n=2- o
J€n(i) w(l‘:’l)
and let 7 be the column vector with components ,...,7,.

2 Inverse of the resistance matrix

We continue to use the notation introducd in Section 1. First we prove a

preliminary result.
Lemma 1 LX1+21 =7
Proof: Since (L + L)X =1, we have

T Z Tij 4 2 inf =1, (4)
j

P R Y

for ¢ = 1,2,...,n. Note that the row sums of L + '{J are all equal to 1 and
hence the row sums of X are all 1 as well. Thus it follows from {(4) that
Ty Ti; 1
T i e (5)
Now

7y
7 o= 2- J

jenld) w(z, j)

1
2 Z m(-’fn + Iy — '-’-Fq) by (2)
gEn(t) A

B Bt el B ?fj)wz A (6)

jentn W(HT) W jentny WG

It

—

Let ; denote the i-th entry of LX1 + %1. Then

Ty Ij,‘ 2
Y= o 3 ot
JEni) w(t’J) JER(i) w(:,]) i
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It follows from (5), (6) and (7) that -, = 7,,2 = 1,2,. .. n, and the proof is
complete. =
The next result is well-known for unweighted graphs (see, for example, {14],

Corollary C). The proof in the weighted case is given here for completeness.
Lemma 2 ¥ ¥jcapy ;;;-fﬁ =2(n-1).

Proof: We use the well-known property, LLY = | — %J, in what follows.
Also note that since L has zero row sums, LX = LL™T.

By (3), R = XJ + JX — 2X, and hence

LR = LR —SLE = B T=BLEY o LRI = 9} = ,1—1.1). 8)
Thus
Sy — traceLR
L ojen(y) w(1' 7)

= — tracelXJ +2(n—1)
= — traceLX11' +2(n — 1)
= —1'LX1+2(n-1)
= 2(n-1),

and the proof is complete. ]

We remark that as a consequence of Lemma 2,

tr=m-% ¥

©jen(n) ”’(’ i)

=Mm-2n-1)=

We now prove the main result of the paper. which is evidently inspired by
the formula due to Graham and Lovasz [13] for the inverse of the distance

matrix of a trec.

Theorem 3 R™' = - 1L + =7
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Proof: As noted in (8),
- 2
LR=LXJ-2I+ EJ
and then by Lemma 1,
> 2 ‘
LR+’2[=L.\J+,—LJ=11‘ (9)

In view of the remark following Lemma 2, it follows from (9) that

(LR+2)r=71'r =2r

and hence LR7T = 0. As remarked in Section 1, R is nonsingular, while since
1'r = 2, then 7 is a nonzero vector. Thus R7 is a nonzero vector as well. Any
vector in the null space of L must be a scalar multiple of 1, and therefore it
follows that RT = al for some nonzero constant a. Thus 7’R7 = ar'l = 2a

'Rt

and hence @ = "= Therefore

Bt (10)
2
It follows from (9) and (10) that
1 1 1 1
__L e ' = o i '
( 3 +T,RTTT R 2LR+ T'RTTT R
 — 1 .#"Rr. ..
= 1'51’1 +T'R‘r( 2 )ll
= 1,
and the proof is complete. L

The formula for the inverse of the distance matrix of a tree given in {13} is
indeed a consequence of Theorem 3, see Corollary 5.
3 Determinant of the resistance matrix

The weight of a spanning tree of G is the product of the edge weights of the
tree. We denote by t(G) the sum of the weights of all the spanning trees of G.
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Theorem 4 detR = (—1}““'2"'3%.

Proof: By Theorem 3, R7! =

Theorem, any cofactor of L equals t(G), it follow8. using the multilinearity of

the determinant, that

i 1
RIBF & e 5 TRTZZT'T"
L, tG) 32
= (_2) ‘r’R'r(z:’T')
Now the result follows since T; 7; = 2. [ ]

The degree of vertex i will be denoted by 6,7 = 1,2,...,n, and § will

denote the column vector with components d;,...,4d,.

Corollary 5 Let G be a tree on n vertices with Laplacian L and distance

matriz D. Let n be the column vector withm; =2 —6;,1=1,2,...,n. Then
(i) D7' = —LL + 2[,‘_],7}71

(i) detD = (—=1)""'(n — 1)2""2.

Proof: Theorem 3, applied to the particular situation at hand, immediately
yields

I 1
D_, m——L ’
7Dn""

It is easily seen, using induction on the number of vertices, that
n'Dn=3 % dy(2-8)(2 - &) =2(n~1),
R

and therefore (i) is proved. Again, (ii) follows readily from Theorem 4 since
for an unweighted tree, t(G) = 1. u
As remarked earlier, (i) and (ii) of Corollary 5 are contained in [13] and {12]

respectively, while a version of (i) and (ii) for a weighted tree is given in [5].
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We now obtain another expression for the determinant of the resistance

matrix. By Lemma 1,

- 2 - 2
Rt = (XL+ El’)R(LX1+;1)

Il

VXLRLX1+ 21U XLR1+ —431121. (11)
n m
We set & = (z11,...,Tnn)". Since by (3), R = XJ + JX — 2X, then
LRL = —2LXL = -2LL*L = -2L. (12)
It follows from (12) that
UVXLRLX1 = —2#Ls. (13)
Again, using (8), LR = LXJ - 2I + 27, and hence
I'XLR1 = n#'Li. (14)
Finally, using (3) and the fact that X has row sums 1, we have
1'R1 = 2ntrace(X) - 2n = 2ntrace(L*). (13)
[t follows from (11), (13), (14), (15) that
7'Rr = 2&'Li + %tmc&(L*). (16)

Combining Theorem 2 and (16) we see that

2n-l
nt(G)

det(R) = (—1)"" (gfz,i- + 2trace(L*)). (17)

In the unweighted case, (17) has been proved in [19] and as remarked there. it
expresses det{I?) purely in terms of the eigenvalues and eignvectors of L.
Acknowledgment: The author sincerely thanks Professor Ivan Gutmen for

making avetlable preprints of (18, 19].
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