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Abstract

In this paper multiderivative methods are developed for the nu-
merical integration of the one-dimensional Schrodinger equation. The
method is called multiderivative since uses derivatives of order two
and four. An application to the the resonance problem of the radial
Schrodinger equation indicates that the new method is more efficient
than the Numerov method and other well known methods of the liter-
ature.

1 Introduction
The one-dimensional Schridinger equation has the form:
y'(r) = [+ 1)/r* + V() = E]y(r). (1)

Models of this type, which represent a boundary value problem, occur fre-
quently in theoretical physics and chemistry, (see for example [1] - [4]).

In the following we present some notations for (1):
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The function W{r) = {(l + 1)/r? + V(r) denotes the effcctive potential

This satisfies W(r) — Qasr — x
e k2 is a real number denoting the energy
e [is = given integer representing angular momentum
e V' is a given function which denotes the potential.

s The boundary conditions are:

y(0) =0 (2)

and a second boundary condition, for large values of r, determined by

physical considerations.

It is known from the literature that the last decades many numerical meth-
ods have been constructed for the approximate solution of the Schridinger
equation (see [5] - [25]). The aim and the scope of the above activity was the
development of fast and reliable methods.

The developed methods can be divided into two main categories:

e Methods with constant coefficients

« Methods with coefficients dependent on the frequency of the problem .

In this paper we introduce an explicit multiderivative method for the numnerical
solution of the Schrodinger equation. The method is called multiderivative
since it has second and forth derivative of the function. We also produce an
explicit multiderivative method with minimal phase-lag. The application of the
new developed metheds to the resonance problem of the Schrodinger equation
shows the efficiency of the new developed wmethods. For comparison purposes
we use the well known Numerov method and the Numerov-type methods with

minimal phase-lag developed by Chawla [31]-[32].

'In_the case of the Schrodinger equation the frequency of the problemn is equal to:

VITF D2+ V() — k2]



2 A New Family Of Multiderivative Methods

Consider the following family of methods to integrate y" = f(z) y(z) :

"

Gubt = 2Un = Y1 + a0 B2y + ay b1y (3)
Yny1 = Zyﬂ = Yn-1 + ’1'2 [CD 3}': +¢ (g:H + y;:—l)]

+ht [Cz v +c3 (!75:1)1 ¥ ygt-)))] ()

"

where ¥, = faiUnsir Yode = (fitas + F200) Unti +2 fose Yhoge and 2 = ~1(1)L.
We note also that ., = fus1 ns1 Where g,y is calculated from the relation
(3). It is mentioned that y,4; = y[zg + (n ii) h], 1= 0,1 and x¢ is the initial
point of integration. It is noted that h is the integration step. It is easy to
see that in order the above method (3)-(4) to be applicable, then approximate
schemes for the first derivatives of y are needed.

In order the above method (3)-(4) to be of algebraic order six, then the fol-

lowing systemn of equations must hold:

l—ay=0
=
12

17(20—201”—‘0

*[11=0

1
-+ = —c—2¢=0

12
1 1
-E(,[+3—6‘6—C3—0
1 1 1 .
20160 360 " 120 =0 )

We note that the above system of equations is obtained if we substitute Taylor
series expansions of y,.;, y:jt, and yﬂj: 7 = ~1,1 into the new mcthod (3)-
(4). After computation of the local truncation error and demanding to have
the maximum algebraic order we arrive to the above system of equations.

The solution of the above system of equations is given by:



T
=10 = 12,6‘0— 126°

11 313 3 3

= 3550 @ = 7ag0 2140 = T ey, (6)

Based on the above coefficients we can find that the local truncation error of

the above scheme (3)-(4) is given by:

. 11
LTE(R) = - g 4 (7)

In order to investigate the periodic stability properties of the numerical meth-
ods for problems of Schrédinger type, Lambert and Watson 26} have intro-

duced the scalar test equation
¥ =-¢'y (8)

and the interval of periodicity, where ¢ is a constant.
Based on their theory when the symmetric two-step multiderivative method is

applied to the scalar test equation (8), we obtain the difference equation:

Yns1 — 2B(H) Y + Y1 =0 (9)
and the associate characteristic equation:
2 -28H)z+1=0 (10)

where H = g h.

For our method (3)-(4) we have

B(H)=1-:H? (1v—i£~H2+~“~H")

2 252 3024
i 8 B s 8 4)
SR e o e 11
*32 (126 * 2o T 8aa0 Ly

Definition 1 (see [26]) A symmetric two-step method with the characteristic

equation given by (10) is said to have an interval of periodicity (O. Hg) if, for
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all H € (0, Hj) the roots z;, i = 1,2 satisfy

i0(H)

zZ =€ , andzy = ¢ 1700 (12)

where 0(H) is a real function of H.

Based on the above definition it is easy for one to see that the following theorem

is hold:

Theorem 1 A method that has a characteristic equation gqwven by (10) has a

non-empty interval of periodicity (0, HZ), if for all H* € (0, H3), |B(H)| < 1.

So we have that in order the above method (3)-(4) to have a non-empty interval

of periodicity the following conditions must hold:

1+ B(H)>0 (13)

for all H2 € (0, HY).
Substituting B(H) from (11) we obtain that (13) is hold for every H? €
(0,6.88) i.e. larger than the corresponding interval of periodicity of Numerov’s

method (which is equal to (0, 6)).

3 A New Family Of Multiderivative Methods
with Minimal Phase-Lag

Consider the following family of methods to integrate y" = f(x.y) :

Unt1 = 2Yn = Yn-1 +h? y:: (14)
Gn = yn — beh? (s~ 20 + 4i) (15)
Pna1t = 2Yn —Yna + Qo n? 1:’:: +ay bt iff.ﬂ (16)

Yntl = 2Yn = Yn—1 +h? [cﬂy:: +a (gi:-t—l +y::-l)]

+h [eaul® + 3 (% +ui2))] (17)



where o s = frus thai Yoie = ( e+ f,fh-) Ynti + 2 fopi Yhse and i = —1(1)1
and b is a constant. We note also that gl | = fuy1 #nsr Where g, is caleu-
lated from the relation (14) and i, = fuy1 Yus1 where §n4 is calculated from
the relation (15). It is easy to see that in order the above method (14)-(17)
to be applicable, then approximate schemes for the first derivatives of y are
needed.

Following the procedure described in the previous paragraph we can find that

the local truncation error of the above scheme (14)-(17) is given by:

LT E(h) =— h® (v - 360bey") (18)

90720
Theorem 2 For all H in the interval of periodicity, we can write:
cos[0(H)] = B(H), (19)

where H? € (0, HE).

Definition 2 For any symmetric two-step method with the characteristic equa-

tion given by (10) the phase-lag ? is equal to (sce [27] and [28]):
t=H—0(H) = H - cos™ (B(H)) = c H**' + O( H***) (20)

where ¢ is the phase-lag constant end p is phase-lag order.

Based on the above Coleman [29] has found the following remark:

Remark 1

t=cH™" + O(H"?) = cos(H) - B(H) =

cos(H) = cos(H — t) = ¢ H"*? + O( H"*") (21)

?Phase-lag physically means how well the nuinerical inethod approximates the solution
of the scalar test equation v = —¢* y. If we have a method of phase-lag order p this means
that [Solution Approximate — Solution Analytical| = O(h")‘
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where ¢ is the phase-lag of the method.
When we apply the above method (14)-(17) to the scalar test equation (8),
the difference cquation (9) and the associate characteristic equation (10) is

obtained, where:

B(H):l—lH"'(l—l—l,}IF(l b HY) + o HY (1~ b HY)
5 13

13
126 15120 181440

5 H"( H2(1 — b HY) - H'(1—b HY)  (22)

Based on Definition 2 and Remark 1 we have that:

= welgpa L. Lo, 1
cos(H) - B(H) = 2JH 4H 7201{ +40320H
_1_ 2 _Ll__ 2 b 4 o 4 — 4
+5 H (1 H*(1 bcH)+3024H (1 — b HY)
__1_ ] __5_ 3 2 4 13 401 _ 1
2H (1‘26 15120” P=tpll) = 181440H =) (23)

It is easy to see that in order to have minimal phase-lag, the following equation

must hold:

11 11

181440 " 504 = = 0 4]
The solution of the above equation is given by:
-1
b= — 25
360 (25)

Substituting the above value of b, into the above formula (23) we find that:

1 13
H) - B(H) = i A -
cos(H) = BUH) = 5556 1 * 130636800

Based on the Remark 1. we say that the above method is of phase-lag order

(26)

eight.
Substituting B(H) from (22), b, from (25) we obtain that (13) is hold for every
H? € (0,7.34) i.e. larger than the corresponding interval of periodicity of the

method developed in previous section.
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4 Computational Implementation

As we have mentioned previously, in order the above methods (3)-(4) and (14)-
(17)to be applicable we need approximate schemes for the first derivatives of

3. This is due to the following formula:

o = (filui + £2) Unsi + 2 frgs Yheandi = —1{1)1. (27)

The general formulae of the first derivatives on the points z;, i = n - 1{1)n+1

are given by:

hYfsy = @2nt1 Ynst + Q1 nia Yn + Qontd Yn-
+h? (bz,n-n Ynst T 01at1Y5 + bontt y::-l)
hy, = azpn Yns1 + QL ¥n + Gon Yo

+1? (ban Yiegs + bin ¥ + bom ¥,

Ryl ) = Gono1Unt1 + @11 ¥n + Gon-1 Yoy

+h? (ba.n—l Yngr T 81 Uy + bont y::-l) (28)

In order the above methods to have maximal algebraic order the following

system of equations must hold:

02, ntl — Qo nl — AL ne1 = 0
gt + 1=ty e =0

1
_bz,n+1 = bo,n+l o bl.n+l = §f12,n+1 22 §a0.|1+] i 1=0

1 1 1
bﬂ,:HI =2 6“2.!11»1 < ‘6'0'0,“+1 b2 n+l e ot 2 =0
1 1 i 1
—3 bo, n41 — o] 02, n41 — ﬁao.n+l = bz sl + = G =0 {29)

~dgn — Qz,n — Q1,0 = 0
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dgn —zn+1=0

i 1
*éaz.n = bl_n — by — 5“-0"1 == b?ﬂn =0
1“ + b Jrl —~bypn =0
"'6 2,n 0, n Gaﬂ,n 2, n =
1 1 1 1
ﬂibnm - §Zﬂe,n-ﬂﬂo,n"§bz,u=0 (30)
—@1,n-1 = @2,n-1 — @o,n-1 =0
l—azn-1+a,n1=0
1 i
=] = Eai‘n--l e Ea(),n—l =ban-1 =01 n-1 — bl),n--l =0
1 1 1
3t §oon-1 " go2n-1 = bzn-1+ bon-y =0
1 1 1 1 1
—_ - o a—=bang—zbppn =0 31
6 24aﬂ,n 1 240-2,?1 1 2 2, n—-1 2 0, n—1 ( )

The solution of the above system of equations for the case: by .41 = by, =

bynoy = 1 is given by:

1 4 -9
A2nyl = ”1‘6s Qg1 = '5'= Qonsl = "ﬁ
11 1
bz,n+1 = ﬁ' b(),n-i—l E
s P P,
“2,:1 e 10 v nl.n T 5 [ a'(),n o 10
1 11
b2.n = 6_61 bﬂ.n - 5_0
-3 -5
Gn-) = ) Bip-l = 4, Qon-1 = 7
1 -1
b n-1 = 7, b n—-1"7" 32
2n-1 G 0,n—1 6 ( )
The local truncation error of the above formulae is given by:
1
LFE oy = BB =L Ty = g - RSy (33)

For the application of the first layer (3) of the method (3)-(4) and for the
application of the first and second layer (14)-(15) of the methods (14)-(17) the

following formula is also needed:
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h y:¢ =y g Yo + Wy Yn—1 T+ h? (bbl,n y.': + M’O.u y:: |) (34)

--aay,, — @tpn =0

aap,+1=0
~bby = bl = 5 2o =0
1
bbg'n G 6 m(),n =0 (35)

The solution of the above system of equations is given by:

1 1
bbﬂ.n = 6, a.aor,, = —!., bbl_n = 5, ady n = 1 (36)

The local truncation error of the above formula is given by:

LTE.,= _Eli J 4@ (37)
5 Numerical Illustrations

[n this section we present some numerical results to illustrate the perforinance
of our new methods. Consider the numerical integration of the Schrodinger
equation (1) using the well-known Woods-Saxon potential (see (1), [4-6], [8])

which is given by

Ug Up2

=N = s R

(38)

with z = exp|(r — Rg)/a], ug = =50, a = 0.6 and Ry = 7.0.. In Figure 1 we
give a graph of this potential. In the case of negative eigenenergies (i.e. when
E € [-50,0]) we have the well-known bound-states problem while in the
case of positive eigenenergies (i.e. when E € (0, 1000]) we have the well-known

resonance problem (see (5], [6] and [15}).
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The Woods-Saxon Potential

Figure 1: The Woods-Saxon potential.

5.1 Resonance Problem

In the asymptotic region the equation (1) effectively reduces to
, {+1
V(@) + (6 - e = o, (39)

for z greater than some value X.

The above equation has linearly independent solutions kxzj(kz) and kzny(kz),
where j(kz),u(kzx) are the spherical Bessel and Neumann functions
respectively. Thus the solution of equation (1) has the asymptotic form (when

T — o)

R

y(z) Akzji(kz) — By(kz)

R

Disin(kz — wl/2) + tan § cos(kz — nl/2)| (40)

where &, is the phase shift which may be calculated from the formula

y(z2)S(x1) — y(21)S(x2) (41)
y(21)C(z2) — y(22)C(21)

tand; =
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for &, and =, distinct points on the asymptotic region (for which we have that
xy is the right hand end point of the interval of integration and zy =z, — A,
I is the stepsize) with S(z) = kxj(kz) and C(x) = keny(kz).

Since the problem is treated as an initial-value problem, one nceds vyp and
y; before starting a two-step method. From the initial condition, 1o = 0.
The value y; is computed using the Runge-Kutta-Nystrém 12(10) method of
Dormand et. al. [35]-(36]. With these starting values we evaluate at z; of the

asymptotic region the phase shift ¢ from the above relation.
5.1.1 The Woods-Saxon Potential

As a test for the accuracy of our methods we consider the numerical integration
of the Schrodinger equation (1) with [ = 0 in the well-known case where the
potential V{r) is the Woods-Saxon one (38).

One can investigate the problem considered here, following two procedures.
The first procedure consists of finding the phase shift 6(F) = & for £ €
[1,1000]. The second procedure consists of finding those E, for E € {1,1000],
at which & equals 7/2. In our case we follow the first procedure i.e. we try
to find the phase shifts for given energies. The obtained phase shift is then
compared to the analytic value of 7 /2.

The above problem is the so-called resonance problem when the positive
eigenenergies lie under the potential barrier. We solve this problem, using the
technicue fully described in [3].

The boundary conditions for this problemn are:

y(0) = 0.

y(z) ~ cos|VET| for large .
The domain of numerical integration is [0, 15].

For comparison purposes in our numerical illustration we use the well known

Numerov's method (which is indicated as method [a]), the explicit Numerov-



type method of Chawla [31] (which is indicated as method [b]), the explicit
Numerov-type method with minimal phase-lag of Chawla et. al. [32] (which
is indicated as method [¢]), the multiderivative method (3)-(4) developed in
this paper (which is indicated as method [d]) and the multiderivative method

(14)-(17) developed in this paper (which is indicated as methodl {e]).

7 —3Z— Method [a]
—— Method [b]
0 — —&A—— Method [c)
—@— Method [d]
4 —4&@— Method [e)
.2 e
£
w
oy —
- -
* = I = T = 3
4 5 6 7 8

Figure 2: Error Err for several values of n for the eigenvalue E3 = 989.701916.
The nonexistence of a value of Err indicates that for this value of n. Eirr is
positive.

The numerical results obtained for the four methods, with stepsizes equal
to h = 3, were compared with the analytic solution of the Woods-Saxon
potential resonance problem, rounded to six decimal places. Fignre 2 show the
ervors Err = —logio| Ecoteutated — Eanatyticat| of the highest eigenenergy E; =

980.701916 for several values of n.
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5.2 The Bound-States Problem

For negative energies we solve the so-called bound-states problem, i.e. the

equation (1) with { = 0 and boundary conditions given by

y{0) = 0,

y(z) ~ exp(—v—FExz) for large z.

In order to solve this problem numerically we use a strategy which has been
proposed by Cooley [34] and has been improved by Blate [33]. This strategy
involves integrating forward from the point z = 0, backward from the point
7, = 15 and matching up the solution at some internal point in the range of

integration. As initial conditions for the backward integration we take:
y(2s) = exp(~v=Ezy) and y(a, - h) = expl-v =Bz~ h)],  (42)

where h is the steplength of integration of the numerical method.

The true solutions to the Woods-Saxon bound-states problem were obtained
correct to nine decimal places using the analytic solution and the numerical
results obtained for the six methods mentioned above were compared to this
true solution. In Figure 3 some results for Ev7 = —l0gio| Ecatcutated — Eanatytical]
of the eigenenergy E)3 = —3.9082324810 using stepsizes equal to h = '.’L" for

several values of n are shown.

6 Conclusions

In this paper a new approach for constructing efficient methods for the numer-
ical solution of the Schrodinger type equations is introduced. Using this new
approach we have developed two multiderivative methods.

From the numerical results we have the following remarks:

e The Numerov’s method and the explicit Numerov-ty pe method of Chawla

[31) have approximately the same behavior.
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s ——k— Method [b]
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; j —4@— Method [e)
-
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0 v T LA B T y 1
2 3 4 5 6

Figure 3: Error Err for several values of n for the eigenvalue Ej3 =
—3.9082324810. The nonexistence of a value of Err indicates that for this
value of n, Err is positive.

¢ The explicit Numerov-type method with minimal phase-lag of Chawla et.
al. [32] and the new multiderivative method (3)-(4) have approximately

the same behavior.
o The multiderivative method (14)-(17) is the most accurate method.

All computations were carried out on a [BM PC-AT compatible 80486 using
double precision arithmetic with 16 significant digits accuracy (IEEE stan-

dard).
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