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Abstract

In this paper multiderivative methods are developed for the nu-
merical integration of the one-dimensional Schrodinger equation. The
method is called multiderivative since uses derivatives of order two
and four. An application to the the resonance problem of the radial
Schrodinger equation indicates that the new method is more efficient
than the Numerov method and other well known methods of the liter-
ature.

1 Introduction
The one-dimensional Schridinger equation has the form:
y'(r) = [+ 1)/r* + V() = E]y(r). (1)

Models of this type, which represent a boundary value problem, occur fre-
quently in theoretical physics and chemistry, (see for example [1] - [4]).

In the following we present some notations for (1):
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The function W{r) = {(l + 1)/r? + V(r) denotes the effcctive potential

This satisfies W(r) — Qasr — x
e k2 is a real number denoting the energy
e [is = given integer representing angular momentum
e V' is a given function which denotes the potential.

s The boundary conditions are:

y(0) =0 (2)

and a second boundary condition, for large values of r, determined by

physical considerations.

It is known from the literature that the last decades many numerical meth-
ods have been constructed for the approximate solution of the Schridinger
equation (see [5] - [25]). The aim and the scope of the above activity was the
development of fast and reliable methods.

The developed methods can be divided into two main categories:

e Methods with constant coefficients

« Methods with coefficients dependent on the frequency of the problem .

In this paper we introduce an explicit multiderivative method for the numnerical
solution of the Schrodinger equation. The method is called multiderivative
since it has second and forth derivative of the function. We also produce an
explicit multiderivative method with minimal phase-lag. The application of the
new developed metheds to the resonance problem of the Schrodinger equation
shows the efficiency of the new developed wmethods. For comparison purposes
we use the well known Numerov method and the Numerov-type methods with

minimal phase-lag developed by Chawla [31]-[32].

'In_the case of the Schrodinger equation the frequency of the problemn is equal to:

VITF D2+ V() — k2]



2 A New Family Of Multiderivative Methods

Consider the following family of methods to integrate y" = f(z) y(z) :

"

Gubt = 2Un = Y1 + a0 B2y + ay b1y (3)
Yny1 = Zyﬂ = Yn-1 + ’1'2 [CD 3}': +¢ (g:H + y;:—l)]

+ht [Cz v +c3 (!75:1)1 ¥ ygt-)))] ()

"

where ¥, = faiUnsir Yode = (fitas + F200) Unti +2 fose Yhoge and 2 = ~1(1)L.
We note also that ., = fus1 ns1 Where g,y is calculated from the relation
(3). It is mentioned that y,4; = y[zg + (n ii) h], 1= 0,1 and x¢ is the initial
point of integration. It is noted that h is the integration step. It is easy to
see that in order the above method (3)-(4) to be applicable, then approximate
schemes for the first derivatives of y are needed.

In order the above method (3)-(4) to be of algebraic order six, then the fol-

lowing systemn of equations must hold:
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We note that the above system of equations is obtained if we substitute Taylor
series expansions of y,.;, y:jt, and yﬂj: 7 = ~1,1 into the new mcthod (3)-
(4). After computation of the local truncation error and demanding to have
the maximum algebraic order we arrive to the above system of equations.

The solution of the above system of equations is given by:
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= 3550 @ = 7ag0 2140 = T ey, (6)

Based on the above coefficients we can find that the local truncation error of

the above scheme (3)-(4) is given by:

. 11
LTE(R) = - g 4 (7)

In order to investigate the periodic stability properties of the numerical meth-
ods for problems of Schrédinger type, Lambert and Watson 26} have intro-

duced the scalar test equation
¥ =-¢'y (8)

and the interval of periodicity, where ¢ is a constant.
Based on their theory when the symmetric two-step multiderivative method is

applied to the scalar test equation (8), we obtain the difference equation:

Yns1 — 2B(H) Y + Y1 =0 (9)
and the associate characteristic equation:
2 -28H)z+1=0 (10)

where H = g h.

For our method (3)-(4) we have

B(H)=1-:H? (1v—i£~H2+~“~H")
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Definition 1 (see [26]) A symmetric two-step method with the characteristic

equation given by (10) is said to have an interval of periodicity (O. Hg) if, for



















































