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Abstract

Let G be a fullerene on n vertices having width w. We prove that the k-th
spectral moment of G depends only on n, w and k for k < 2w + 6 and its value
is denoted by W(n,w, k). We study the properties of the function W(n,w, k) and
derive some bounds for the width w in terms of eigenvalues of G.

0 Introduction

Let G be a simple graph on n vertices with an adjacency matrix A and eigenvalues
2 8% B S

The k-th spectral moment of G is defined as S, = 1%, A¥, and it is equal to the
number of all closed walks of length & in G (see (2, 4]). If we know Sy, Sy, ..., Saoy, we
can compute eigenvalues Ay, Ay, .., An.

We have Sg =n, 5 =0, S; = 2m, S; = 6¢, where m is the number of edges and ¢ the
number of triangles of G.

Fullerenes, which are 3-regular planar graphs with faces being only pentagons and
hexagons, have attracted much attention in chemical and mathematical literature. From
the point of view of spectral graph theory, the most important question regarding fullerene
graphs is whether they are characterized by their spectra.

It is studied in [3] to what extent the structure of a fullerene graph can be reconstructed
from its eigenvalues and graph angles. It is noted that among fullerene graphs no two
with n < 100 have the same spectrum.

Here we determine some further properties of a fullerene graph using only eigenvalues,
i.e., spectral moments, which is a step ahead in resolving the question whether fullerenes

are characterized by their spectra.



64

By above general formulas for spectral moments, for a fullerene graph on n vertices we
have Sy =n,5, = 0,8, = 3n, 53 = 0. It is known from the literature (c.f, e.g., [6]) that
the spectral moments Sy, for & < 11 under some conditions are either constant or depend
ouly on n. Expressions for S; for a few values of & above 11 under some conditions are
known as well.

Using the notion of the width of a fullerene graph (sce Section 3 for the definition), we
are able to extend the formulas for the spectral moments S; for & much above 11 under
additional conditions.

The plan of the paper is as follows. Basic facts from the theory of graph spectra which
are relevant for fullerene graphs are summarized in Section 1. Some results, obtained in
(3], on hexagonal nets and on pentahex subnets, which will be used later, are presented

in Sections 2 and 3, respectively. Finally, our results on spectral moments of fullerene

graphs are described in Section 4.

1 Information derived from eigenvalues

Based on the classic knowledge from the spectral graph theory, given the eigenvalues of a

fullerene only, we can

s establish that the fullerene graph is connected and regular of degree 3 (2, p. 94],

e determine the girth g (g = 5 for fullerene) and the number of circuits of length ¢
(12 for fullercne) (2, p. 95, Theorem 3.26],

o determine the number of circuits of lengths 6,7, 8 and 9 [2, p. 97, Theorem 3.27).

From the last item mentioned, we conclude that we can recognize whether the fullerene
has disjoint pentagons. In the sequel we shall consider only fullerenes with disjoint pen-
Lagons,

The distance of the vertex j to the nearest pentagon is called pentadistance of a vertex.
Let P be the set of vertices at the distance s from the nearest pentagon. Let t be the
largest pentadistance of a vertex. The vertex set is then partitioned into subsets Fy, .

, .. Obviously, since the pentagons are disjoint. we have that || = 60.

Let Ni(3) be the number of closed walks of length k starting and terminating at
vertex 7. The sequences Ni(7) (7 = 1,2,...,n) were used in [3] as a basic tool for

detecting details of the structure of a fullerene graph.
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For any vertex j of the fullerene /' we have that
No(i) =1, M()=0, N()=3 Ni(i)=15.

If j is a vertex of a pentagon, then N5(5) = 2 and, otherwise, Ns(7) = 0. If we allow
pentagons to have conunon vertices, then N5(3) is twice the number of pentagons to which
the vertex 7 belongs.

If j does not beloug to any pentagon, then we can find its distance to the nearest
pentagon. Suppose that the nearest pentagon is at distance s from j. The (s + 2)-
neighborhood of 7 does not contain odd cycles and it is bipartite, so that Ny(j) = 0
for k < s. The pentadistance of a vertex j is obtained from the eigenvalues and angles as
the smallest s for which Nogus(7) > 0.

Of course, the sum of numbers Ni(j) for all vertices j yields the k-th spectral moment
Si. Unfortunately, the numbers Ny (7) cannot be determined from eigenvalues. Neverthe-
less, we shall use these numbers in our study of spectral moments.

However, the numbers Ni(j) can be calculated provided we know eigenvalues and
the angles of the graph [4, pp. 82-83]. This fact was used in (3]. In particular, {from
the eigenvalues and angles we can obtain the partition Py, P, ..., P and the numbers

|Pol, [Pl - -, |22%| which can tell us a lot about the structure of the fullerene.

2 Coordinates and closed walks in hexagonal nets

The (s + 2)-neighbourhood of a vertex j at the distance s from the nearest pentagon is
isomorphic to a subgraph of the infinite, 3-regular. hexagonal net. In this section we give
the number of closed walks starting and terminating at a vertex of such net.

In a geometric representation of the hexagenal net, each edge in the net has the same
unit length and one of three directions. Denote the unit vectors having these directions
with u, v and w, as done on Fig. 1. Note that there are two kinds of vertices: vectors u,
v and w leave the vertices of the first kind and enter the vertices of the second kind. Note
also that edges in the net always connect vertices of different kinds.

All shortest paths from a fixed vertex A to all other vertices may be divided into
classes based on the set of vectors they contain:

{u,v, —w}, {~u, —v,w},

{u, —v,w}, {~u, v, ~w},
{~u,v,w}, {2, v, —w}.
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Figure 1: Two kinds of vertices in hexagonal net.

These classes divide the hexagonal net into six hexagonal subnets starting from A, as it
is shown in Fig. 2. There are two kinds of hexagonal subnets. We will call the hexagonal
subnet having only one edge with an end in A the hez subnet of the first kind, while the
hexagonal subnet having two edges with ends in A will be called the hex subnet of the
second kind.

{10,0y (10,1) {10,2) (10,2} (10,1) {10,0)

Figure 2: Hexagonal subnets of the hexagonal net.

Suppose A is the vertex of first kind, such that u, v and w leave the vertex A. Consider
the vertex B from the hex subnet of the first kind corresponding to the set of vectors
{—u, -v,w}. Let d be the distance between A and B. Let a; be the number of edges on
the shortest path from A to B along the vector z € {—u, —v,w}.

Returning to Fig. 2, let us coordinatize the hex subnet: vertex B is uniquely deter-
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mined by the distance d and min{a_,,a_,}. Thus d and min{a_,,a_,} may be viewed
as the coordinates of 3 in this hex subnet. Other hex subnets may be coordinatized
the same manner.

The number of closed walks of given length in hexagonal net is calculated in [3]. Since
the graph of this net is bipartite, the number of closed walks of an odd length is equal
to 0. Let Ny be the number of closed walks of length k. The following proposition is

proved in [3].

Proposition 1 The number of closed walks of length 2m starting and terminating al a

2
vertez in the hexagonal net is equal to Nom = 30, (T) (T)

For any vertex j of a fullerene graph we can compare the sequences Ni(j) and Ny,
The smallest index k for which N¢(j) # Ni indicates the presence of an object strange
for hexagonal net in the l‘;‘j-neighborhaod of 7. In our case, it is of course a pentagon,

as pointed out in Section 1. More details can be obtained in a similar way.

3 Penta-hex nets and subnets

We need to study the 3-regular, planar penta-hezagonal net, made of the central pentagon

p surrounded by infinite number of hexagons, shown in Fig. 3.

(10,01 (10.1) (10,20 {10.2) (10.1) (19.01

Figure 3: Part of penta-hexagonal net with pentagonal bands and penta-hex subnets.

The infinite sequence of hexagons hy, hs, ... such that k) has a common edge with p.
his1 has a common edge with k; for i € N and the centers of pentagon p and all hexagons
hy, ha, ... are collinear is called a pentagonal band. The subnets made of hexagons between

the two pentagonal bands (for which initial hexagons have a common edge) are called
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penta-hex subnets. There are five pentagonal bands and five penta-hex subnets. Notice
that penta-hex subuets arve disjoint and contain all vertices of the penta-hexagonal net.
A penta-hex subnet is isomorplic to a hexagonal subnet and can be coordinatized in the
same manner (cf. Fig. 3). We assume that vertices on pentagons have coordinates (0,0).

The following lemma has been proved in [3].

Lemma 1 The number of vertices at distance d from the pentoegon in a pente-hezagonal

net is equal to 5 ng +5.

Since there are 12 pentagons in the fullerene, the number of vertices with pentadis-
tance d is equal to 60 HJ + 60, in the case that d-neighborhoods of pentagons are disjoint.
Largest k for which |P| = 60 l%J + 60 is called the width of fullerene F, as defined
in [3]. The set of vertices of the pentadistance at most w is called the regular part of
F, while the remaining vertices form the wreguler part of £. If w is the width of F
then w-neighborhoods of pentagons are clearly reconstructed. In particular, we have the

following proposition.

Proposition 2 The regular part of a fullerene graph wnth widih w contains

= a((3][3] +00)

vertices.

Proof. By Lemma 1 we have
A s
Ay =123 (5 H + 5) .
s=0 2
Since s;ﬂ BJ = [[—;l {%l, we are done. W

Let 7 be a vertex in a penta-hex subnet with coordinates (s,¢). The number H,&“!
denotes the number of closed walks of length & in the penta-hexagonal net starting and
terminating at j. Obviously, if & < 2s + 5, then no closed walk of length k can embrace
the pentagon and thus,

HE' = Ng, for k < 2s+5.

In case k > 2s + 5, we do not have an expression for the numbers H,(:“'c), but they can be

calculated for given k, s, ¢ using a computer program.
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4  Width and spectral moments

Let j be a fixed vertex of F, and let s be its distance from the nearest pentagon, ic..
€l

If0 < s < w, then let ¢ be its coordinate in the penta-hex subnet of the nearest
pentagon. Since j is at distance at least w+1 from any other pentagon, then for k < 2w +6
no closed walk of length k starting from j can embrace any other pentagon of a fullerene
and thus, the number N (7) is the same as if j is contained in a penta-hexagonal net, i.e
Nie(§) = HEAl § has coordinates (s, €).

If w < s < {, then for & < 2w + 6, no closed walk of length & starting from j can
embrace any pentagon of a fullerene and thus, the number Ni(7) is the same as if 7 is
contained in a hexagonal net, i.e., Ni(j) = Ny

Since the numbers H¢

and Ny do not depend on the fullerene F, we can form
the function W(n,w, k) that is equal to the sum of the corresponding numbers of closed
walks of length k, k < 2w + 6, in any fullerene with n vertices and width w, which can
be determined at least by a computer program. Actually, we don’t need to know values
H}f‘" alone, but only their sum across the “layers” of a penta-hexagonal net. This sum
might happen to be easier to calculate.

Let ¢(s) be the family of coordinates ¢ of vertices at pentadistance s in the penta-
hexagonal net. We introduce the functions

S =123 BEY,

JEPs cEp(s)

k) = 3 fls.k).
s=0

fls.k)

Then we can formulate our main result.

Theorem 1 Let [ be a fullerene graph on n vertices and having width w. Fork < 2w +6

the k-th speetral moment of F s equal to
Wi = il 4 (n - su(l% [%’1 S 1)) N m

Although we do not know an explicit expression for W(n,w, k), this function should
be considered as known and can be tabulated for any range of values of n, w, k.
Using a sufficiently large finite part of the pentahex net we calculated the numbers

HE) Ly means of the package MATLAB. The results are given in Table 1, where in each
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k{01 2 3 4 5 6 7 8 9 10 11 12
sC
00|11 0 3 0 15 2 91 26 609 260 4325 2390 31965
tof1r 0 3 0 15 0 93 2 637 38 4611 494 34583
20 0 93 0 639 4 4649 94 35067
30 0 639 0 4653 4 35165
40 0 4653 0 35169
" 0 35169
k 13 14 15 16 17 18
ScC
00| 21218 243105 185362 1889123 1606848 14928081
10| 5500 265957 56506 2084135 553868 16574037
20 1428 271187 17916 2136065 202352 17065187
30 122 272705 2268 2155215 33434 17280723
40 6 272829 222 2157525 4804 17314541
1 18 272817 570 2157153 11002 173075563
50 0 272835 6 2157753 272 17319553
1 0 272835 18 2157741 690 17319111
60 0 2157759 8 17319829
1 0 2157759 48 17319789
70 0 17319837
1 0 17319837
k 19 20 21 22 23
sc
00 | 13879044 119555435 119707390 968041777 1032235820
10| 5270282 133377007 49169432 1083882175 452520308
20| 2142368 137885353 21733702 1124475981 214040922
30 430862 140146039 5091972 1147108355 56699904
40 80092 140576343 1142952 1152110809 14721384
1 168000 140472815 2235863 1150775985 27207542
50 6944 140660529 132890 1153313801 2132058
1 15622 140650921 273060 1153152505 4080518
60 428 140667621 12518 1153449557 268528
1 2028 140665941 49780 1153408783 931818
70 8 140668057 506 1153462473 17030
1 48 140668017 2368 1153460531 66452
80 0 140668065 10 1153462985 730
1 0 140668065 100 1153462895 5470
2 0 140668065 200 1153462795 10200
90 0 1153462995 10
1 0 1153462995 100
2 0 1153462995 200
100 0
1 0
2 0
Table 1: Values of function H{" for small s and k.
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k Wn,w, k) | k| Win,w,k)

0 n| 1 0

2 3n| 3 0

4 152 5 120

G 93n—-120( 7 1680

8 639n — 1920 [ 9 18360
10 4653n — 22680 | 11 184800
12 35169n — 240120 | 13 1790880
14 272835n — 2411640 | 15 16996800
16 2157759n — 23510400 | 17 | 159254640
18 17319837n — 224961960 | 19 | 1479510240
20 | 140668065n — 2125759320

Table 2: Values of function W{n,w, k) for k < 2w + 6.

of the columns, after the first repetition, the values continue to repeat indefinitely, so that
only the first two repetitions are shown.

Using Theorem 1 we obtained from Table 1 the values of W (n,w, k) as given in Table 2.
The moments shown here in Table 2 agree with those from [6] for k < 11. They also agree

for k = 12 and k = 13 if one supposes that w > 1.

Corollary 1 Given a non-negative integer k, the k-th spectral moment Sy is constant if
k is odd and is a linear function of n if k is even for all fullerene graphs with sufficiently
large width. |

In fact, Theorem 1 can be extended to higher odd spectral moments.

Theorem 2 Let F be a fullerene graph on n vertices and having width w. For k odd
satisfying k < 4w + 11 the k-th spectral moment of ' is equal to

Wi(n,w, k) = g(2w + 3, k).

Sketch of the proof. Closed walks of odd length not greater than 4w+11 which embrace
a pentagon P start and terminate at vertices belonging to the (2w + 3)-neighbourhood of
P. Such a walk cannot embrace any other pentagon and can be considered as a walk within
the penta-hex net containing P. Of course, a vertex could be in (2w + 3)-neighbourhoods
of more than just one pentagon. Hence, for k < 4w + 11 we have

2w+3

S =12 ¥ H,E"c)=2§3f(s,k)=g(2w+3,k). ]

=0 ced(s) s=0
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Theorem 2 explains why values of S7, Sg and Sy from Table 2 are equal to those from
[6]. The fact that Sz and S,y from Table 2 are equal to the values of [6] suggest that
Theorem 1 might be valid also for even k greater than 2w + 6 but we were not able to

prove that in general.

Theorem 1 can be used to derive an upper bound for the width of a fullerene graph.
If we know spectral moments S (k = 0,1,2,...) of a fullerene graph /7, then we can find
maximum w such that Sy = W{n,w, k) for k£ < 2w + 6. The value w, found in this way,
should represent the width of F.

At least we can formulate the following theorem.

Theorem 3 Let F be a fullerene graph with eigenvalues Ay, Az, ..., Ay Let wg be the

largest positive integer w such thal
n
YoM =Winwk) (k=01,...,2w+6).
i=1

Then the width of ' is at most wy. |
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