MATCH no. 50, February 2004
MATCDY (50) 27- 37 (2004)

Cominunications in Mathematical

and in Computer Chemistry ISSN 0340 - 6253

PROPAGATION OF THE SOLITON IN A NON-PERIODIC
PROTEIN CHAIN

D.R. Todorovi¢*’, Lj.M. Ristovski** and V.M. Risti¢*

* Faculty of Science, R. Domanovica 12, 34000 Kragujevac, Serbia and Montenegro
** Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia and Montenegro

(Received June 23, 2003)

Abstract. The propagation of Davydov’s soliton in the polymer chain with impurities has
been investigated. The method is proposed and numerically verified in which the disturbance
of the chain caused by the presence of the impurities is included in the system Hamiltonian
through a particular term added to the Hamiltonian of the ideal polymer chain. The obtained
numerical results show that the impurities must be considered as relevant obstacles, which
strongly affect the soliton propagation. A single impurity could be considered as an
unpermeable or partially permeable potential barrier. The increase of the number of impurities
is equivalent to the increase of the barrier height.

INTRODUCTION

The fact that the Davydov soliton model [1] was a subject of intensive theoretical
investigations during the last three decades [2] confirms its importance in the attempts to
understand and describe the energy transport processes in @-helix proteins. In this relatively
simple model the analysis of these processes has been reduced to the analysis of Frenkel's
cxeitons [3] in the soft one-dimensional polymer chain, which are identified as amide-1
vibrational quantum exciton in proteins [4]. Due to the nonlinear and strong exciton - lattice
interaction, autolocalized excitations - solitons appear in this system. Thus, these are in fact
the excitonic polarons. In other words, the propagation of the exciton (amide-1 quanta) along
the chain is followed by local chain deformation, which means that the real excitation is the

"dressed" exciton, i.e. the autolocalized solitary wave.
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However, one should bear in mind that Davydov's soliton model is mainly of the
methodological importance, since it could not be accepted as a realistic one [5]. Namely, the
proteins are macromolecules composed of 19 different amino acids and one imino acid
(proline). Although, as it was done above, Davydov's model is described as a model which
considers the excitations in the a-helix proteins, it is not entirely true. Namely, Davidov’s
model is using the o-helix protein made of identical monomer units, which is not true in
reality. Real a-helix protein is composed of different monomer units. In this paper a nonideal
polymer chain is considered (that is a chain with implanted several different monomer units,
which are treated as “impurities™).

As far as we know, in previous papers on Davydov model, only an ideal infinite
translationally invariant chain without impurities has been considered. Taking into account
the above mentioned complexity of the protein structure, having the impurities which disturb
its translational invariance, in this paper we propose an approach which allows analyzing a
nonideal chain with small number of impurities. The disturbance of the structure caused by
the impurities, is considered as a particular perturbation of the Hamiltonian of the ideal chain.
This approach, which is also numerically verified, allows adjusting the theoretical method

used for analysis of the ideal chain and applying it easily to a nonideal chain with impurities.

SYSTEM HAMILTONIAN

In order to obtain the Hamiltonian of the disturbed polymer chain, i.e. the chain
consisting of weakly interacting monomers, we start from standard Davydov’s Hamiltonian of
the ideal polymer chain, designated below as H,, to which the term /{, describing supposed
disturbance due to the existence of the impurities in the chain, shall be added and explained in
detail later. Hamiltonian A, consists of threc parts: Hamiltonian H,, which describes the
monomer amide-l quantum excitations, which will be considered, in accordance with
Davydov's approach, as Frenkel's excitons in so called two level approximation, which means
that only the ground and the first excited levels are taken into account, because the higher
excited levels are supposed to be sufficiently far away from the first excited level [3);

Hamiltonian HF, which describes vibrations of monomer units, and Hamiltonian H,, which
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describes exciton—phonon interaction. Thus, the Hamiltonian of the disturbed nonideal

polymer chain is given as
H =H,+H,=H +H, +H +H, )

Hamiltonian /.. in the usual nearest neighbours approximation, is of the following

form:

H,=3(A+D,)B B, 43 J,..B.(B,,+B,.) (2)

nm

where B! and B, are the Bose operators which create and annihilate the excitation on the
n—th chain site having the on site energy A+ D, where A is the excitation energy of the
isolated monomer and D, is the contribution to the on site energy arising due to resonant

dipole~dipole interaction of the considered monomer unit with other monomer units. Matrix

elements J,, characterize the exciton—exciton interaction which enables the exciton

propagation along the chain.

H , is taken in the harmonic approximation, which means that

H,,=%z":|:$p:+k(u,,—um,)z], 3)

where M is the mass of the monomer unit; u, is the n~th monomer unit displacement and p,
is the corresponding conjugate momentum: k is the lattice elasticity coefficient.

Hamiltonian H, of the exciton-lattice interaction could be easily derived starting from

exciton Hamiltonian H,. It is necessary to expand quantities D, and ./, ., in terms of

monomer unit displacements #, up to the first order terms. In this way one could obtain that

D, =-D+ x(u,, —1,,)

"rn,ml =—J+ y,(u,-u,,) @

where y, and y, are the exciton—phonon coupling parameters. It should be noticed that in
original Davydov's theory only constant 7, is included, while y, is omitted. However, more

detailed analysis shows that z, should not be neglected [6].
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After the substitution of the expansions (4) in (2), the obtained Hamiltonian could be
divided into two parts. The first one, which does not include monomer unit displacements w,
corresponds to the exciton Hamiltonian, while the second one, with the terms containing the
monomer unit displacements, corresponds to exciton-lattice interaction Hamiltonian /),

which is given as

H,= 2,2 8, B, (. —u, )+ 2,9 B (B, + B, ,)(u,-u,,) (5)

Now, it is obvious that Hamiltonian H,, consists of two parts with two coupling
parameters g, and y,. The first part determines the change of on-site exciton energy caused

by the lattice vibrations, while the second term reflects the influence of these vibrations on

exciton propagation along the chain.

The particular manner in which we include the disturbance caused by the impurities has
affected some of the previously considered Hamiltonian terms. Namely, although the chain
has impurities, the Hamiltonian #,, which is in fact the Hamiltonian of ideal Davydov's
model, describes an ideal polymer chain with no impurities. As we have the chain with
impurities on some chain places, this means that to H, some nonexisling terms have been
added and therefore these terms must be extracted and the terms corresponding to the
impurities included too. In order to solve this problem we follow the usual theory of single
impurity in the crystal lattice, where it is taken that the presence of impurity on some lattice
site is equivalent to presence of a local potential on that site. In other words, this means that
impurity affects the coupling constants and the other relevant parameters mainly near the
impurity position and consequently H, could be extracted from the Hamiltonian 17, in
which the constants A, J. k, ¥ have been renormalized in an appropriate way. However, the
corrections of all these constants need not be considered because some of them are negligible
quantities. We have found out that the corrections of the exciton energy A and the constant of
excilon-exciton interaction J. are the only ones that, in somewhat different manner, should be
included. These quantities should be substituted by the new ones A+A ¥Y(na), and
J +.JY(nay, where Y(na)= ¥, is the function of the lattice position "vector" na which has

following form
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that has maxima at »u,, the lfattice sitc where the impurity is placed. As it can be seen ¥, is
chosen to be sufficiently fast decreasing (exponentially). Constant / depends on the potential

induced by the impurity effects and will be obtained from the physical condition that the

impurity affects only several nearest neighbors.

Taking into account the previous facts, which indicate that only the exciton parameters
are corrected, it is easy to show that the exciton Hamiltonian of the nonideal chain could be

expressed as a sum of aforementioned exciton Hamiltonian of the ideal chain /i, and

Hamiltonian of the residue, /f, which is of the form
H,=3AY,B, B~ JY, B/ (B, +B,) M

The non—zero terms in the above sums are only due to lattice points in which the

impurities are present.

DYNAMIC EQUATIONS OF THE SOLITARY WAVES IN THE CHAIN WITH
IMPURITIES

As it is known from the theory of Davydov's model, described here by Hamiltonian H,,,

in the case of strong exciton-lattice coupling and small longitudinal elasticity coefficient
("soft" polymer chain), the solitonic excitations could arise in the system. The following
calculation, which treats the nonideal chain with impurities, is completely based on the
presumptions of Davidov's soliton theory, and therefore it will be given in short. The only
differences in our case, which do not change the calcualtion procedure. are following: the
presence of A, in the system llamiltonian and, as mentioned above, we included the
parameler y, also, contrary to the usual approach, in which only coupling parameter z, was
taken into account. The calculation procedure given here is the derivation of basic dynamical
equations of the theory of Davydov's model. The first step is to write down the averaged
equation of motion of the lattice and the time dependent Schrodinger equation of the whole

system, using system Hamiltonian H_ and following one—quasi-particle wave function
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|w) = e’i"""z[,qu(f)is;
) =(W

0] st=Y[r)p,-a,0)y,]

Pl () ={¥|u, )

(8)

where i()) is the vacuum state function, exp[S(¢)] is the unitary operator usually used in the
theory of lattice vibrations in the presence of external forces, while A, (r) determines the

probability of creating the exciton on the lattice site n, which means that

Sl4,mf =1. 9)

"

The averaged equation of motion of the lattice, i.e. of the quantity «, is of the form

d'a,
M e —k[2a, =t -l 04 F =1 4. 1] 10)

+ 1[4, (A~ 4,0+ (4, - 4,)4,)

On the other hand, by substituting |‘P> (Eq. 8) into the time dependent Schridinger

equation, where total system Hamiltonian H, has been used, we have derived that:

<A T, 4 (G =0 A, =+ TE) A+ 4,,-24,)
+ 1 [(apul "anq)*(an _anf{)Anﬁ\]’ (1)

1 1 P
A= A—D+:’—Z[Hﬂ'5 +k(a,, —(IMI)B:‘—ZJ, e=A-2J

Since our main aim s to carry out the numerical analysis of the last two equations, it is
useful to write down these equations in the continual approximation (na — x;

(nxha— xxta; Alna,ty — A(x,1)...) in which we have

A, =Axt)xa oM 5,t) +la2 a—A(f'J)
ox 2 ox* (12)
da(x,t) 1 ,d%a(x,0)
a,, =a(xi)ta G + 502 P%

After substituting expansions (12) into (11) we obtain the following equations
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- \,n
3 an’

ox
, : (13)
il ke TP ok i B < T ayBID
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where ¢ is the lattice constant and
dax 1 TV
=—, B(x,)=—=A(x,t)e" |, v; =—,
p=r Bl = AN v =0 ”
Sepepps_— A
=012, m, 202[J+J-Y(x)]’

v, is the sound velocity in the unperturbed phonon system; £, is the lattice phonon energy;
m,, is the exciton mass. As it can be seen, the expression for the exciton mass in the disturbed

chain with impurities contains the additional term 2a’J ¥(x), which means that the exciton

is, in some sense, dressed in the additional local potential, due to the presence of the

impurities.

RESULTS OF THE NUMERICAL ANALYSIS

Equations (10) and (11), which determine the dynamics of the considered disturbed

nonideal chain, have been analysed numerically. The results are presented graphically in the
figures given below, all of them representing the time dependence of the quantity | 4,()[,
which is the density of probability to obtain the excitation on the given lattice site # in the

given time . In all presented cases it was assumed that: the cyclic boundary conditions could

be applied, the chain has 200 monomer units, the first chain monomer unit was excited, the
monomer unit mass is M =1.9-10"kg, the elasticity coefficient is k =20Nm™ and
A=-44.10"1,J=-1.510"]. Constant f, which appears in ¥, is taken to be equal to
1.8, while the values of quantities y, “nd g, differ from case to case and will be given in the

forthcoming analysis of the figures.

In Fig. 1. and Fig. 2. the propagation of the solitary wave in the monomer chain with

one impurity on the lattice site n=120 is presented. Fig. 1. corresponds to the case
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7, =00-10""N and x, =0.2-10" N, while in the case presented in Fig.2 it is taken that
7 =5510"N and z, =0.2-10"" N . These values are in the value range which gives the

numerical solutions of the dynamic equations of Davydov's model.

FIGURE 1. Total retlection of the soliton at one impurity (at 120th site):
7=6010"N, ,=02-10"N, A =-044-10], J=-0.15-102], =18

As it can be seen, in Fig. 1. we have the total reflection of the soliton on the impurity,
which means that it could be considered as a potential barrier. Before and after the reflection
the soliton propagates with constant velocities, where the velocity after the reflection is
increased. This velocity increasing after the total reflection, which indicates the decreasing of
the exciton mass, depends on the values of the parameters g, J, being the measure of the
change of the overlap integrals (monomer unit to unit interaction) in the vicinity of the
impurity. The decrease of the exciton mass, in accordance with Eq. (14), corresponds to the
positive values of the quantity J. However J can aiso be negative, which means that the
soliton velocity may also decrease after the total reflection. The wavy area on the left side of

the figure indicates the weak dispersion of the reflected solitary wave.
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FIGURE 2. Partial passage of the soliton and pariial reflection of the soliton at one
impurity (at 120th site): 7, =5.5-10"" N, », =02-10""N, A=-0.44-107 ],
J=-0.15-107%17J, =18

Fig. 2. shows that the result of the numerical analysis strongly depends on the values of
the relevant physical quantities. Even the small change of the value of z,, leads to quite
different results, which show that the impurity acts like partially permeable potential barrier,
because two solitary waves appear there. One of them is reflected on the impurity and
propagates in the opposite direction, while the other passes over it and propagates in the
primary direction. Which is in fact Above Barrier Reflection, as the energy of the solitary
wave is greater than the energy of the barrier - i.e. impurity. The amplitudes of these two
solitons are decreased (which does not need any additional explanation), while the velocities

are increased and the cause of this effect is simiiar to that mentioned in the previous case.

[n Fig. 3. the propagation of the solitary wave in the polymer chain with five impurities
on the lattice sites 7 =120--124 is presented. The values of quantities y, and y, are the
same as in the case presented in Fig. 2: 7, =5.5-10"N and », =0.2-10"" N . Contrary to
that case, where the impurity acts like partially permeable potential barrier, here five
impurities act like unpermeable potential barrier and the solitary wave is totaly reflected. This
means that the increase of the number of impurities is equivalent to the increase of the
potential barrier height The wavy area on the left side indicates that the dispersion of the

reflected solitary wave is stronger than in the case when one impurity is present.
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FIGURE 3. Total reflection of the soliton at five impurities (at 7 =120 - 124 sites):
2,=5510"N, ,=02-10"N,A=-044-10"J,J = -0.15:107J, f=1.8

CONCLUSIONS

The presented results could be emphasized as follows:

The method is proposed which allows a simple analysis of the solitary waves in the
disturbed Davydov's model, where the polymer chain contains the impurities. The
disturbance of the chain caused by the presence of the impurities is included in the
system Hamiltonian through a particular term, which is added to the Hamiltonian of the
ideal polymer chain. The presented numerical result confirms the simplicity and the

efficiency of this approach.

The impurities must be considered as relevant obstacles, which strongly affect the
soliton propagation in the polymer chain. Even the single impurity could be
unpermeable potential barrier, which reflects the solitary wave. Though they have lower
cnergy than the solitary wave, so, as already mentioned, this could be considered the
case of Above Barrier Reflection. If it is not the case, then the impurity is partially
permeable potential barrier, because there appear two solitary waves, and one of them is
reflected on the impurity barrier and propagates in the opposite direction, while the

other passes over the barrier and propagates in the primary direction.
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¢ The increase of the number of impurities in the polymer chain is equivalent to the

increase of the potential barrier height, which becomes impermeable for the solitons.

REFERENCES

[1] A.S. Davydov, N.I. Kislukha, Phys. Stat. Sol. (b), 1973, 59, 465.

[2] See the Reference list in Pang Xiao-Feng, The lifetime of the soliton in the improved
Davydov model at the biological temperature 300K for protein molecules, Eur. Phys.
J.B., 2001, 19, 297.

[3] A.S. Davydov, Theory of Molecular Excitons, Plenum Press, New York, 1971.
[4] A.S. Davydov, Biology and Quantum Mechanics, Pergamon Press, New York, 1982.
[5] Lj. Ristovski, Z. Nestorovi¢ and G.Davidovi¢, Z. Phys. B, 1992, 88, 145.

[6] D. Todorovi¢, Lj. Ristovski and B. To3i¢, Phys. Stat. Sol. (b), 1995, 190, 251.



