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Abstract

A connected graph G is said to be k-cycle resonant if, for 1 < ¢t < k, any ¢
disjoint cycles in G are mutually resonant; that is there is a perfect matching M
of G such that each of the ¢ cycles is M-alternating cycle. Some necessary and
sufficient conditions for a graph to be k-cycle resonant were given by Xiaofeng Guo
and Fuji Zhang, and they also established some necessary and sufficient conditions
for a planar graph to be l-cycle resonant and 2-cycle resonant. A linear algorithm
for deciding if a planar graph is 1-cycle resonant was established by Zhixia Xu and
Xiaofeng Guo. In this paper, we establish a linear algorithm for recognizing planar

2-cycle resonant graphs.

1 Introduction.

In the topological theory of benzenoid hydrocarbons, a hezxagonal system ( or benze-

noiwd system ) denotes the carbon atom skeleton graph of a benzenoid hydrocarbon, that
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is a 2-connected plane graph whose every interior face is bounded by a regular hexagon.
A Kekulé structure I of a hexagonal system H is also a perfect matching ( 1-factor ) of
H. A cycle (or circuit ) € in a hexagonal system F is said to be conjugated or resonant
if there is a Kekulé structure K of H such that ¢ 1s a K-alternating cycle. In the conju-
sated cireuit model [1-24], conjugated circuits with different sizes have different resonant
energies. 1f the size of a conjugated circuit is equal to 4n+ 2, then the smaller n the larger
the resonance energy. So the conjugated hexagon has the largest resonance energy. On
the other hand, from a purely empirical standpoint, Clar found that various electronic
properties of polycyclic aromatic hydrocarbons can be predicted by appropriately defining
aromatic sextets [23-35]. According to Clar’s aromatic sextet theory, the Clar formula
of a hexagon is a set of mutually resonant sextets with the maximum cardinal number,
where sextets mean resonant hexagons and a set of mutually resonant sextets means a set
of disjoint hexagons for which there is a Kekulé structure & so that all of the the disjoint

hexagons are K-alternating hexagons.

For a hexagonal system H with Clar number ¢ ( the number of sextets in a Clar
formula of H ), Clar formula of H may be not unique, and, for 1 < k < ¢, any k
disjoint hexagons of H are not necessarily mutually resonant. An interesting problem is
under which conditions any k& disjoint hexagons of a hexagonal systemm H are mutually
resonant? If a hexagonal system H satisfies such property, that is, for a positive integer
kand 1 €t <k, any k disjoint hexagons of H are mutually resonant, it is said to be

k-resonant or k-coverable.

As a generalization of k-coverable hexagonal systems, Guo Xiaofeng and Tuji Zhang
[36] introduced k-cycle resonant graphs. Some properties of k-cycle resonant graphs and

some necessary and sufficient conditions for a graph to be k-cycle resonant were given.

Xiaofeng Guo and Fuji Zhang [37] further investigated planar li-cycle resonant graphs
with & = 1,2, Some new necessary and sufficient conditions for a graph to be plana
L-cycle resonant or planar 2-cycle resonant were given. Zhixia Xu and Xiaofeng Guo {38]
investigated the construction and the recognition of planar 1-cycle resonant graphs, and
established a linear algorithm for deciding if a planar graph is planar l-cycle resonant.
In ref. [39], the present authors liave given a method for constructing any planar 2-
cycle resonant graph from smaller 2-cycle resonant graphs. In the present paper, a linear

algorithm for recognizing 2-cycle resonant graphs is established.

In this paper, for the basic terminologies, we refer to the books by Bondy and Murty
[40] and L. Lovdsz and M. D. Plummer [41].
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2 Preliminary Results

Definition: A connected graph G is said to be k-cycle resonant if, for 1 < ¢ < k,
any ¢ disjoint cycles in G are mutually resonant, that is, there is a perfect matching M

of G such that each of the ¢ cycles is an M-alternating cycle.

Theorem A. [37] A 2-connected graph G with at least k disjoint cycles is k-cycle
resonant if and only if G is bipartite and, for 1 < t < k& and any t disjoint cycles
C,,Cq -+, Cein G, G - U::1 V(C;) contain no odd component. W

The above thecrem is a revision of Theorem 3.1 [36], in which the condition “2-
connected” is neglected, however, the condition is implicitly used in the preof of Theorem
3.1 (36].

Theorem A’. [37] A connected graph G with at least & disjoint cycles is k-cycle
resonant if and only if G is bipartite with perfect matchings and, for 1 <t < k and any ¢
disjoint cycles Cy, Gy, -+, C in G, G — | Ji_, V(C;) contain no odd component. W

A block of a connected graph G is either a maximal 2-connected subgraph of G or a
cut edge of G.

Theorem B. [37] Let G be a k-cycle resonant graph, then

(i) for a 2-connected block G’ of G with the maximum number k* of disjoint cycles, if

k* < k, G" is k*-cycle resonant, otherwise G’ is k-cycle resonant;

(ii) the forest induced by all the vertices of G not in any 2-connected block of G has
a unique perfect matching. B

From the theorem B, we know that a non-2-connected k-cycle resonant graph can be
constructed from some disjoint 2-connected k-cycle {or k*-cycle if k* < k, where k* is the
maximum number of disjoint cycles) resonant graphs and a forest with perfect matching
by adding some edges between the 2-connected graphs and the forest so that the resultant
graph is connected and the added edges are cut edges. Hence we need only to consider
2-connected k-cycle resonant graphs.

Let G be a connected graph, and H a subgraph of G. A vertex in H is said to be an
attachment vertez of H if it is incident with an edge in E(G)\ E(H). A bridge B of H
in G is either an edge in E(G) \ E(H) with two end vertices being in H, or a subgraph
of G induced by all the edges in a connected component B' of G — V(H) together with
all the edges with an end vertex in B’ and the other in H. The vertices in V/(B) NV (H)
arg also attachment vertices of B to H. A bridge with k attachment vertices is called a
k-bridge.
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The attachment vertices of a k-bridge B3 of a cycle C in G divide C' into k edge-disjoint
paths, called the segments of B. Two bridges of C avoid one another if all the attachment

vertices of one bridge lie in a single segment of the other bridge, otherwise they overlap.

For a bipartite graph, we always color its vertices black and white so that adjacent
vertices have different colors.

Additional necessary and sufficient conditions for a graph to be planar 1-cycle resonant

and 2-cycle resonant was given by Xiaofeng Guo and Fuji Zhang [37]:

Theorem C. [37] A 2-connected graph G is planar 1-cycle resonant if and only if
G is bipartite and, for any cycle C in G, any bridge of C has exactly two attachment
vertices which have different colors. W

Theorem D. [37] A 2-connected graph G is planar 1-cycle resonant if and only if
G is bipartite and, for any cycle C in G, any two bridges of C avoid one another and, for
any 2-connected subgraph B of G with exactly two attachment vertices, the attachment
vertices of B have different colors. B

On the basis of these necessary and sufficient conditions, Zhixia Xu and Xiaofeng Guo
(38] have given a modification of that as follows.

A plane graph is an embedding of a planar graph. We call the boundary of the exterior
face of a 2-connected plane graph G the outer cycle of G.

Theorem E. [38] Let G be a 2-connected plane bipartite graph, then G is l-cycle
resonant if and only if any bridge of the outer cycle C of G has exactly two different
colored attachment vertices and for any maximal 2-connected subgraph H of any bridge

B of C, the following conditions are satisfied:
(1) H is 1-cycle resonant;
(2) H has exactly two different-colored attachment vertices u and v;
(3) u and v avoid any bridge of the outer cycle of H. M

According to Theorem B, Zhixia Xu and Xiaofeng Guo [38] provided a linear algorithi

for deciding a plane graph to be 1-cycle resonant.
Algorithm F. [38] Let G be a 2-connected plane bipartite graph,
1. Color all the vertices of G so that adjacent vertices get different culors.

2. Let Cy be the outer cycle of G, check the bridges of Cy to see whether any bridge

of ¢y has exactly two different-colored attachment vertices. If not so, go to step 11

3. If any bridge of Cj is a path, go to step 10.
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4. Denote by Gy, Gy, -+, G, all the maximal 2-connected subgraphs of the bridges of
Cy. Set 1 =1.

5. Check: (1) whether two attachment vertices of G are different-colored (Since G is
2-connected and any bridge of Cy has exactly two attachment vertices, G; also has exactly
two attachment vertices); if yes, let them be v and v; (2) for the outer cycle C, of 5,
whether u and v avoid any bridge of C; in Gy; (3) whether any bridge of C; has exactly two
difterent-colored attachment vertices. If any one of the three conditions is not satisfied,
go to step 11;

5. If i # r, set 1 =1+ 1 and return to step 5.

7. If any bridge of the outer cycles of Gy, G5, -+, G, is a path, go to step 10.

8. Let Hy, Hz,---, H; be all the maximal 2-connected subgraphs of the bridges of the
outer cycles of Gy, Gy, -, G,

9. Set G;=H;,1=1,2,---,5, and set 7 = s, i = 1, go to step 5.

10. Stop, G is 1-cycle res:.mant.

11. Stop, G is not 1-cycle resonant. W

Theorem G. [38] Algorithm F is linear with respect to the number of vertices, W

In what follows we give some terminologies and notions relative to planar 2-cycle
resonant graphs.

For a 2-connected subgraph B in G with exactly two attachment vertices, we call
G[E(G)-E(B))] the complement of B in G, denoted by B.

A path P in a graph G is said to be a chain if all internal vertices of P are of degree
2 in G and the degree of any end vertex of P is not equal to 2 in G. The set of internal
vertices of a chain P in G is denoted by V;(P).

A vertex u of a graph G is said to be cycle-related to another vertex v of G, denoted
by u = v, if u is contained in a 2-connected block of G and any cycle containing u must
also contain v. If v is also cycle-related to u, then u and v are mutually cyele-related.

denoted by u & v.

Property H. [37)] If a vertex u of a connected graph G' is cycle-related to another
vertex v of G, then u and v belong to a same 2-connected block B in G and all the edges

in B — v incident with u are cut edges of G —~ v. B

Theorem I. [37] A 2-connected graph G is planar 2-cycle resonant if and only if G
is planar 1-cycle resonant, and
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(i) for a chain P of even length and end vertices v; and vy, G — Vi(P) has exactly
two blocks each of which is 2-connected, and v, and vy are cycle-related to the common

vertex w of the two blocks.

(ii) for a chain P’ of odd length and end vertices vy and v, such that G = V;(P) is not
2-connected, either (a) G~ V7 (P) has exactly three blocks, each of which is a 2-connected,
and each of v, and v, is cycle-related to the other attachment vertex of the block containing
it, and the attachment vertices of the third block are mutually cycle-related in the third

block, or (b) any two 2-connected blocks of G — V;(P) are disjoint,

(iii) "or a 2-connected subgraph B, of G with exactly two attachment vertices, if B is
not 2-connected and every block of B is 2-connected, then B, has exactly three blocks,
say B,, B3, By, and the attachment vertices of each of By, By, B;, By are mutually
cycle-related in the block. W

Let G be a graph, v and v are two distinct vertices in G. Let P* be a path with end
vertices u and v, and V(G)NV(P") = {u,v}. Let (G + P*)(u ) denote the graph GU P*.

Let G be a planar I-cycle resonant graph. If G has no disjoint cycles, we call it simple
planar 1-cycle resonant graph. Obviously, planar 1-cycle resonant graphs with cyclomatic
number (@) = 1,2 are simple. Generally, if G consists of at least two chains of odd
length with the same end vertices, then G is simple planar 1-cycle resonant. We call this
kind of graphs parallel-odd-chain.

Theorem J. [39] A 2-connected planar graph G with cyclomatic number v(G) > 2
is simple 1l-cycle resonant if and only if G is bipartite, and in the vertices with degree
greater than 2 there is a vertex v such that G — v is a tree and the color of v is different

from all the other vertices with degrees greater than 2. W

From Theorem J, we know that if G is 2-connected simple planar 1-cycle resonant,
then there is a vertex v the color of which different from all the other vertices with degrees
greater than 2, such that G — v is a tree, and v is in all cycles of G. We call the vertex
v cycle-common vertex of G. So, a simple planar l-cycle resonant graph has a cycle-
common vertex. Since the cycle-common vertex of a simple planar 1-cycle resonant graph
is colored differently from all the other vertices with degrees greater than 2, then we have

the following corollary.

Corollary 1. A simple planar l-cycle resonant graph G with cyclomatic number

v(G) > 2 has at most two cyclc-common vertices. W

Having the aid of Theorem I, we can get four structure models of a 2-connected planar
2-cycle resonant graph G as foliows:
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Structure 1 Structure 2

N

W

Structure 3 Structure 4

Figure 1.

Structure 1: If there is a chain P of even length and end vertices v and v, then
G — Vi(P) has exactly two 2-connected blocks By and B; with a common vertex w, and

u = w in B; and v = w in B,, as shown in Figure 1.

Structure 2: For a chain P of odd length and end vertices u and v such that G—V;(P)
is not 2-connected, G — V; (P} has exactly three blocks By, B, and Bj, each of which is 2-
connected, and each of z and v is cycle-related to the other attachment vertex of the block
containing it, and the attachment vertices of the third block are mutually cycle-related in

the third block, that is, w =% z, v = y and = & y, as shown in Figure 1.

Structure 3: For a chain P of odd length and end vertices v and v such that G-V, (P)
is not 2-connected, any two 2-connected blocks of G — V;(?) are disjoint. In addition, any
chain P in G - V;(P) induced by non-2-connected blocks of G — V;(P) is of odd length,
as shown in Figure 1, where B; is a 2-connected block, for i = 1,2, ¢, (t > 2).

Structure 4: For a 2-connected subgraph By of G with exactly two attachment
vertices, if I, is not 2-connected and every block of Bj is 2-connected, then B, has
exactly three blocks, say Bs, B3, By, and the attachment vertices of each of By, B;, Bs,

By are mutually cycle-related in the block, as shown in Figure 1.

From these four structure models, we can see that a 2-connected planar 2-cycle reso-
nant graph G consists of two kind of subgraphs: chains and 2-connected subgraphs with
exactly two attachment vertices, based on some rules. We call the two kind of subgraphs

structural-chain and structural-brick of G respectively.
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Theorem K. [39] A 2-connected graph G with cyclomatic number v{G) > 3 is
planar 2-cycle resonant if and only if there is a 2-connected subgraph By in G with exactly
two attachment vertices such that G is one of the Structures 1, 2, 3, 4 ( shown in Fig. 1 ).
and for every 2-connected structural-brick B; of G with exactly two attachment vertices v,
and v, (Bi+ P")(u,.0,) is 2-cycle resonant or simple 1-cycle resonant, 1 = 1,2,- -, ¢, (t > 2).
Moreover, if G is of the Structure 1, then there is at least one 2-connected structural-brick
B of G with exactly two attachment vertices u and v such that (B + P*)(.y) is plana
2-cycle resonant.

3 Properties of Planar 2-Cycle Resonant Graphs

In this section, we give some properties relative to the algorithm for recognizing 2-cycle

resonant graphs.
By Theorem 1 [37], we have the following property.

Property 1. Let G be a 2-connected planar 2-cycle resonant graph, B a 2-connected
subgraph of G with exactly two attachment vertices. If B is neither a path nor 2-
connected, then G is one of the Structures 1, 2, 3, 4, in which B is a structural-brick.l

Property 2. Let G be a plane 2-cycle resonant graph, Cy the outer cycle of G. Let
u and v be two attachment vertices of a bridge of Cy, SB a union of a segment @ of C;
separated by u and v and all bridges of Cy attaching to the segment . Then SBuU Cy

is either simple 1-cvcle resonant or 2-cycle resonant. B

Proof: Since G is 1-cycle resonant, then every pair of bridges of Cy avoid each other,
and SB is a 2-connected subgraph of G with exactly two attachment vertices u and v.
Obviously, SB is connected, but not 2-connected. If SB is a path, then G = SBUCy, the
result holds. If S5 is not a path, by Property 1 and Theorem K, (SB + P‘)(”) is either
simple l-cycle resonant or 2-cycle resonant, where P* is a path with odd length, and
V(SB)NT(P*) = {u.v}. We can take Cy — V;(27) = P*, then SBUC) = (SB+ P*)(,.4),
which is either simple 1-cycle resonant or 2-cycle resonant. W

Property 3. A 2-connected planar graph & with cyclomatic number v(<) > 2 is
simple l-cycle resonant if and only if either G is a parallel-odd-chain, or there is a 2-
connected subgraph with exactly two attachment vertices such that G is of the Structure
1, and for every 2-connected structural-brick B of G with two attachment vertices u and

v, both B and (B + P*).) are also simple planar 1-cycle resonant.

Proof : Necessity. Let G be a 2-connected planar simple 1-cycle resonant graph with

cyclomatic number v#(G) > 2. By Corollary 1, G has at most two cycle-common vertices
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In what follows, we show that if G has two cycle-common vertices then &' is a parallel-
odd-chain, and if G has exactly one cycle-common vertex then G is of the Structure
L

Let w, and w, be two cycle-common vertices of G, then w; and w, have different
colors. For every vertex u € V{G) \ {wy, w2}, we have that dege(u) = 2, since the color
of eycle-common vertex is different from all the other vertices with degrec greater than 2.

Hence G is a parallel-odd-chain.

Let w be only one cycle-common vertex of G, then all vertices in V(G) \ {w} with the
color of w's have degree 2 in G; and, in V(G) \ {w}, there arc at least two vertices with
degrees greater than 2 in G, which have different color from w's. Since G — w is a tree,
between any pair of vertices in V(G) \ {w} with degree greater than 2 in G, there exists
a path P’ with even length not containing w. Then the path P’ contains a chain P of
even length with two end vertices u; and u;. Let T' be the tree of G —w, then T — V;(P)
has two component trees Ty and T. Let u; € V(T;), 1 = 1,2. Since w is adjacent with
all pendant vertices of the tree T in G, and any pendant vertex of T; is also a pendant
vertex of T, so G[V(T;)U {w}] = B; is a 2-connected subgraphs of G with two attachment
vertices u;, w, and u; and w have different colors, for 2 = 1,2. Hence G is of the Structure
1. If B; is a cycle, then both B; and (B; + P;)u,w) are simple planar 1-cycle resonant.
If B; is not a cycle, then Tj is the tree of B; — w. For any vertex v with degree greater
than 2 in B;, we have that degg(v) > 2, then the color of w is different from all the other
vertices with degree greater than 2 in B;. By Theorem J, we have got that B, is simple
planar 1-cycle resonant, and (B; + P} )., ) 15 also simple planar l-cycle resonant ( since
u; and w have different colors ).

Sufficiency. If G is a parallel-odd-chain, obviously it is simple 1-cycle resonant. Now
let G be of the Structure 1, P the even length chain with two end vertices u, and u; in
the Structure 1, and B, a 2-connected structural-brick with two attachment vertices u,, w.
i=1,2, where w is the common vertex of By and By. (B; + P ){u, w) is simple planar 1-
cycle resonant, 2 = 1,2. By Theorem J, we show that G is simple planar 1-cycle resonant.
Fori =1,2, in (B;i + P )uw): w and w have degrees greater than 2 and are differently
colored, as B; is 2-connected and P is a chain of odd length. Since (B; + P }iuw) 15
simple planar 1-cycle resonant, by Theorem J, then one of u; and w must be a cycle-
common vertex. Further, we can claim that w is a cycle-common vertex of (B;+ P )iy, v).
Otherwise, in (B; + P )(u, w), there is a cycle containing u; but w, this is in contradiction
with w; = win (B, + P )uw- Let T; be the tree of (B + P! )qu,w) — w, 1 = 1,2, then
(TY=VH P U(T = Vi (P3))UP is a tree of G —w. For any vertex v with degree greater

than 2 in G, either degis, +py),, ., (¥) > 2 OF deg(p,+pp),, ., (V) > 2. Then the color of w
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is different from all the other vertices with degree greater than 2 in G, Since G is of the
Structure 1, then G is bipartite and planar. So, by Theorem J, we have that G is simple

planar 1-cycle resonant. W

From Property H, we have the following properties, which is usefully for checking

wether a vertex of a 2-connected graph G is cycle-related to another vertex of G.
Property 4. Let G be a 2-connected planar bipartite graph. Then
(1) w=vin G ifand only if u = v in (G + P")quy

(2) Let B be a 2-connected subgraph of G with exactly two attachment u and v, If
u=>vinG, thenu=vin 5. A

Property 5. Let G be a 2-connected plane bipartite graph, Cy the outer cycle of G,
and {u,v} C V(Cp) . Let every bridge B of Cy has exactly two attachment vertices, and
B is not 2-connected. Then u = v in G if and only if, for any bridge B of Cy with an
attachment vertex u, v is another one attachment vertex of B, and u is incident with only

one edge in B. B

For the sake of designing algorithm, we shall characterize a class of planar 2-cycle
resonant graphs: G is a planar 2-cycle resonant graph, C is a cycle of G, and all the
bridges of C attach to same pair of attachment vertices. At first, we will investigate the
structure of a bridge of a cycle in planar 2-cycle resonant graph G. Let C be a cycle of G
and B a bridge with attachment vertices u and v of C. By property 1, if B is not a path
then B is a structural-brick in one of the Structures 1, 2,3, 4. From Theorem K, we can

determine the structure of B as following five types.

Type 1. B has exactly one chain P with even length induced by cut edges of B, one
end vertex of which is u or v, say v. B — (V;(P) U {v}) is the only 2-connected block B’
of B, and u € V(B'). Let w be the common vertex of P and P in B, then w = u in B'.

Type 2. B has exactly one chain P with odd length induced by cut edges of B. If one
of end vertices of P is v or v, say v, then B — (Vi(P) U {v}) has exactly two 2-connected
blocks By and B, with commmon vertex w. Let = be the end vertex of P distinct from v
and z € V(B,), then w € V(B,), and z = w in By, u & w in B,.

Type 3. B has exactly one chain P with odd length induced by cut edges of B.
If both end vertices z and y of P are not v and v, then B — V;(P) has exactly two 2-
connected blocks B, and B,. Let {z,u} and {y,v} be attachment vertices sets of B, and
B respectively, then £ = u in By and y = v in B,.

Type 4. B has at least two chains induced by cut edges of B. Then any two 2-

connected blocks of B are disjoint, and the attachment vertices u and v of bridge B are
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not attachment vertex of 2-connected blocks of B. Morcover, any chain induced by cut
cdges of B is odd length.

Type 5. B has no chain induced by cut edges of B. Then B has exactly three 2-
connected blocks, and the attachment vertices of each of them are mutually cycle-related
in the block.

Moreover, for any 2-connected block B' with two attachment vertices z and y in bridges
of the Types 1, 2, 3, 4, 5, (B' 4 P*)(z,) is cither planar simple 1-cycle resonant or planar
2-cycle resonant.

Lel GG be a planar 2-connected graph and C' a cycle of G, and all the bridges of C
attach to same pair of attachment vertices u and v. If G is planar 2-cycle resonant, by

Theorem K, G can be classified three kinds of graph as following:

Class 1. Any bridge of C is either a path or one of the Types 1, 2, 4, and one of u
or v is incident with only one edge in every bridge of C. Morcover, if all bridges of C' are
of the Type 1 or paths, there is at least one 2-connected block B’ with two attachment
vertices v’ and v' in bridges of C, such that (B' + P*)(y v is planar 2-cycle resonant.

Class 2. There is exactly one bridge of the Type 3 on €, and any other bridge of C
is either a path or a bridge of the Type 4.

Class 3. There is exactly one bridge of Type 5 on C, and any other bridge of C is
either a path or a bridge of the Type 4.

Iu the light of above statements and Theorem K, we have the next theorem.

Theorem 6. Let G be a 2-connected graph and C a cycle of G, all the bridges of C
attach to same pair of attachment vertices. Then G is planar 2-cycle resonant if and only
if G is one of the Classes 1, 2, 3. Moreover, if G is of the Class 1 and all bridges of C are
of the Type 1 or paths, there is at least one 2-connected block B’ with two attachment

vertices «' and v’ in bridges of C, such that (B'+ P*)(y ) is planar 2-cycle resonant. B
Combining Theorem 6 and Property 5, we have following corollary.

Corollary 7. Let G be a planar 2-cycle resonant graph and C a cycle of G. If all

bridges of C attach to same pair of attachment vertices u and v, then

(1) w=>vin G if and only if G is of the Class 1 and u is incident with only one edge
in every bridge of C.

(2) u ¢ vin G if and only if G is the Class 1 and any bridge of C' is the Type 4 or a
patf. W
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4 A Linear Algorithm for Recognizing Planar 2-Cycle
Resonant Graphs

Let G be a 2-connected planar graph. Zhixia Xu and Xiaofeng Guo [38] have given
the linear Algorithm F for deciding if G is 1-cycle resonant. We now establish a lincar
algorithm for recognizing planar 2-cycle resonant graphs. At first, we give the basic cutline

of a method how to determine wether or not G is planar 2-cycle resonant.

Basic outline: Let SBj be a 2-connected subgraph of G with exactly two attachment
vertices 1y and vg such that SBy is neither a path nor 2-connected. Let SB; be all the
maximal 2-connected subgraphs of SB, with two attachment vertices u; and v, 1 <7 < k.
Check wether or not G is one of the Structures 1, 2, 3, 4, in which S5, are the structural-
bricks, and wether or not u; and v; satisfy the cycle-related conditions required by the
structure models, for 0 < i < k. If not, then G is not 2-cycle resonant. If yes, then G
can be decomposed into smaller 2-connected subgraphs SBy, SB, SB;, ---, SBy. For
(SBi + P )uiwy 0 < 1 < k, we repeat to check them with the method above. If all the
smaller 2-connected subgraphs obtained in certain decomposition course are parallel-odd-
chains, then stop checking, and G is either 2-cycle resonant or Simple 1-cycle resonant. If
the structure model in every decomposition is the Structure 1, by Property 3, we know that
G is simple planar l-cycle resonant. If there is a structure model in the decomposition

process, that is not the Structure 1, by Theorem K, we have that G is planar 2-cycle
resonant.

I3ased on the Theorem K, Property 3, and Theorem 6, we can establish a linear

algorithm for recognizing planar 2-cycle resonant graphs.

Let C be the outer cycle of a 2-connected plane bipartite graph G, and let every
bridge of Cy has exactly two attachment vertices that have different colors. Let P be a
chain on Cy with two end vertices u and v. If u and v are also two attachment vertices of
a bridge, we call the chain P bridge-chain of outer cycle Cy of G.

Let G be a 2-connected graph, and u,v € V(G). If v and v need not satisfy the
cycle-related condition of u = v or v = wu, it is said that v and v are cyele-related free
in G. For the convenience of designing the algorithm, we introduce a index cr(G, ) of
illustrating cycle-related relation that u and v ought to satisfy in G, where u and v are
two vertices appointed in V(G), let ¢r(Gyo) =1, 2, 3, dmean by u = v, v = u, u & v,

w and v are cycle-related free in G respectively.
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Algorithm 8.Let G be a 2-connected plane bipartite graph with cyclomatic number
v(G) 2 3.

1. Embed & in the plane, and color all the vertices of G so that adjacent vertices get
different colors. Set G € G, Gy =0, G, =0, er(Gyp) = 0 and 2-cr = 0.

2. Take out a graph G from G. Let Cy be the outer eycle of . Find all the bridges
By, By, -+, B, of the outer cycle Cy of G and check whether any bridge of Cy has exactly
two diflerent-colored attachment vertices. If not, go to step 12.

3. Find all the maximal 2-connected subgraphs G, G, -+, G, of the bridges of Cy
and check whether the attachment vertices u; and v; of G; have different colors and are

not both on V(Cy). If not, go to step 12.
4. If er(G.,) # 0, then:

(1) Check wether u and v avoid every bridge of outer cycle Cp in G. If not, go to
step 12.

(2) Check wether u and v satisfy the cycle-related condition corresponding to
er(Gyp). If not, go to step 12.

(3) Set G = (G + P*)(uu), and let the outer cycle Cy of G is the outer cycle of
(G + P")uw, (thatis, P* is a bridge of Cy ).

5. Let P be a bridge-chain of the outer cycle Cy with end vertices zq and yg in G,
and By, B,, ---, By all the bridges of Cy with the two attachment vertices zo and y,.
Let SBy = PU (Ui, B.) ( then SBy is a 2-connected subgraph of G with exactly two
attachment vertices zg and o ).

6. If SBy is not a path, then let SB, be all the maximal 2-connected subgraphs of
SBp with two attachment vertices z; and y;, 1 € i < m.

(1) Check wether G is one of the Structures 1, 2, 3, 4, in which SB, are the
structural-bricks, for 0 <1 < m. If not, go to step 12.

(2) For every one of the structural-bricks SB8;, 0 € 7 < m, check wether the two
attachment vertices z; and v, satis{y the cycle-related condition demanded by the structure

model. If not, then go to step 12.
(3) If G is not the Structure 1, then set 2-cr = 1.

{4) Set SByUCy € Gy Set SB;UCy € Gy, for 1 <4 < m. ( Then Cp is the outer
cycle of SB;UCy, and all bridges of outer cycle of SB; Uy are the bridges of outer cycle
Cy of G, which attach to the segment of Cy contained in SB;. We take the segment of Cy
not contained in SB; for a bridge-chain on Cy in SB; U Cy ). Take out a graph G from
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Gy, return to step 5.

7. If SBy is a path, then let SBy U Cy € Gy. I G, # B, then take out a graph from G,
and return to step 5. If G, = 0 and G # @, then return to step 2.

8. Take out a graph G from G, ( the outer cycle of G is Cp, and all bridges of Cy of
( attach to same pair of attachment vertices zg and yp ). Check wether G is vne of the

Classes 1, 2, 3, or a parallel-odd-chain. If not, go to step 12.
9. If G is one of the Classes 1, 2, 3, then
(1) If there is a bridge of Cy which is not the Type 1, then set 2-cr = 1.

(2) For every maximal 2-connected subgraphs G; with two attachment vertices u;
and v, of the bridges of Cp in G, set G = Gy, u = w;, v = v, and G € G. Determine the
value of er(Gy,,) according to the cycle-related relation of u and v demanded by the type
of the bridge in which G is contained.

10. If G, # @, then return to step 8. If G, =0 and G # 0, then return to step 2.

11. Stop. If 2-er = 1, then G is planar 2-cycle resonant. If 2-cr = 0 then G is simple
planar 1-cycle resonant.

12. Stop. G is neither simple planar l-cycle resonant nor 2-cycle resonant.
Theorem 9. Algorithm 8 is linear with respect to the number p of vertices of G.

Proof: According to the basic outline of determining wether or not G is 2-cycle
resonant, we designed the Algorithm 8. By Theorem K, Property 3 and Theorem 6,
Algorithm 8 is valid. Next, we investigate the complexity of the algorithm.

Let G be a 2-connected planar bipartite graph with p vertices and ¢ edges. Clearly, it
takes O(P) operations to embed G in the plane and to color the vertices of G in step 1.

The operations in steps 2, 3, and 4(1) are also the main body of Algorithm F, from

Theorem G, we know that the total operation time of these operations is O(F).

[n steps 4(2) and 6(2), we have to determine cycle-related relation of two appointed
vertices u and v. Before step 4, all bridges of outer cycle of G have already been deter-
mined. So, if we have to check wether u = v, by Property 5, we need only to check, for
every bridge B with the attachment vertex u, wether v is another attachment vertex of
B, and wether u is incident with only one edge in B. In the course of decomposing G in
Algorithm 8, every structural-brick in a structure model with two attachment vertices u
and v contains all bridges attaching to u and v, and u and v will require checking cycle-
related relation demanded by structure model. There are at most three structural-bricks

with same pair of attachment vertices u and v in the course of decomposing G. So for
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every bridge I of outer cycle of 7, the boundary of B is checked at most three times in

the operation of checking cycle-related relation of two appointed vertices.

In step 6(1), to determine wether G is one of the Structures 1, 2, 3, 4, we need only
o find the boundary of the interior face f that is enclosed with the boundaries of S8,
and SBy. The boundary of the interior face f consists of the boundaries of some bridges
of Cy and some segments of Cy. In the symmetric difference of Cy and the boundary
of interior face f, every cycle with exactly two attachment vertices is the boundary of a
structural-brick SB;. In step 8, to determine wether G is one of the Classes 1, 2, 3, or a
parallel-odd-chain, we need only run along the boundary of every bridge of outer cycle of
G. So, in the operations of determining the structure model and the class of G, for every

bridge I3 of outer cycle of GG, the boundary of B is checked at most two times.

Hence summing over all iterations, each edge of G is checked in steps 4, 6, 8 at most.

ten times.

Moreover, there is a kind of graphs (G;+ P*)(,, v,) in the operation course of Algorithm
8, where G; is a 2-connected block of a bridge B of outer cycle of G with two attachment
vertices u; and u; P* is a path with odd length, and E(P*) ¢ E(G;). The number of all
2-connected blocks in bridges of outer cycle of G is not greater than half of the number
of edges that are contained in boundaries of all bridges of cuter cycle of G, then the
number of P* appearing in the operation course of Algorithm 8 is at most ¢g/2 times. P*
is a bridge of outer cycle of G,, and P* is checked at most seven times in all iterations.
We can let [E(P*)] = 1, that is, P* is a additional edge. So the total operation time of
checking these additional edge is O(q) = O(p).

To sum up the above, we have got that Algorithm 8 is linear with respect to the
number p of vertices of G. A

If G is not 2-connected, and any two maximal 2-connected subgraphs of G have no
common vertex, we can check every maximal 2-connected subgraphs of G by Algorithm
6. If every maximal 2-connected subgraph of G is either planar simple 1-cycle resonant or
planar 2-cycle resonant, and the forest induced by all the vertices of & not in any maximal

2-connected subgraph of G has a perfect matching, then G is 2-cycle resonant.
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