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Abstract

The Wiener index is a topological index introduced as a structural descriptor for molecular
graphs of alkanes, that are trees with vertex degrees at most four (chemical trees). It is the
sum of distances between all pairs of vertices in a graph. The line graph L{G) of a graph
(7 has the vertex set V(L(G)) = E(G) and two distinet vertices of L(G)} are adjacent if the
corresponding edges of (¢ have a common endvertex. It is known that the Wiener index of a tree
and of its line graph are always distinct. Infinite families of chemical trees T with the property
W(T) = W(L(L(T))}) are presented.

1. Introduction

The Wiener index is a well-known distance-based topological index introduced in 1947
as structural descriptor for acyclic organic molecules [1]. It is the swn of distances between
all unordered pairs of vertices of & graph G-

W@ = ) duw),
fuv}Cv(T)
where d(u, v) is the nuinber of edges in a shortest path connecting the vertices v and v.

This graph invariant belongs to the molecular structure-descriptors, called topologi-

cal indices, that are successfully used for the design of molecules with special properties,

*This work was financially supported by the Russian Foundation for Basic Research (project codes
01-01-00794 and 02-01-00039)
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including pharmacologic and biological activity (see books [2-4] and sclected reviews (5
8]). Mathematical properties of the Wiener index for some classes of chemical graphs arc
outlined in recent reviews [9-12].

The line graph L(G) of a graph G has the vertex set V(L(G)) = E(G) and two distinct
vertices of the graph L(G) are adjacent if the corresponding edges of G have a common
endvertex. The concept of line graph has found various applications in chemical rescarch.
Parameters of a line graph have been applied for the evaluation of structural complexity
of molecular graphs and for design of novel topological indices [13-15). Tt has been shown
that the Wiener index of a tree and its line graph are always distinct [16].

The iterated line graph, L™(G), is defined as L*(G) = L™ '(L(G)), where L%(G) = (.
The size of L"(G) rapidly increases reflecting the branching (and, therefore, complexity)
of the initial graph. Invarants of iterated line graphs for acyclic molecular graphs have
been used for the characterization of their branching and for establishing a partial order
among isomeric structures [17].

A graph L*(G) is called the guadratic line graph of G. In this paper we deal with trees
T satisfying the following equality

W(T) = W({LX(T)). (1)

The number of trees of order n < 17 having this property has been reported n (11, 18].

In this paper, we shall construct infinite families of such trees.
2. Main result

Buckley established an exact relation between the Wiener index of a tree and of its

line graph [16]. For a tree with n > 2 vertices,

W(L(T)) = W(T) — (;)

This result immediately implies that there are no n-vertex trees, n > 2, having the
property W(T') = W(L(T)).

Trees with property (1) have been found by inspection all trees of order n < 17
[11, 18]. First, we extend data from [11]. Table 1 shows the number of such trees for
n < 26. Here t, is the number of all n-vertex trees and w, denotes the number of trees
having property (1). Diagrams of all such trees for n < 15 are shown in Figure 1. The

Wiener index is indicated near every diagram.
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Figure 1. All trees of order n < 15 having W(T') = W(L*(T)).
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Table 1: The number of trees of order n having property(1).

n TR | TR S e n ta Wy, ay e
9 47 I 0o 0 1 18 123867 73 18 23 1
10 106 1 0 0 1 19 317955 204 50 63 4
11 235 1 0 1 0 20 823065 231 36 45 4
12 551 0 0 0 4] 21 2144505 513 126 92 7
13 130 7 1 2 4 22 5623756 576 190 60 7
14 3159 8 2 5} 0 23 14828074 1520 469 145 12
15 741 22 3 13 2 24 39299897 17156 450 99 8
16 19320 25 6 12 3 25 104636890 3763 1188 187 14
17 48629 66 13 27 5 26 279793450 4085 1514 121 4

1t should be noted that almost all trees of order n < 26 with property (1) arc chemical
trees, i.e. their vertex degrees are at most four. For the first time, vertices of degree 5
appear in 19-vertex trees and the total nuinber of non-chemical trees on n < 26 vertices
is equal to 41. The above data leads to the following natural question: does there exist

an infinite family of trees having property (1)? We answer this question in affirmative.
Theorem. There exist infinite families of trees T' satisfying equality W(T) = W(L*(T)).

In order to prove this result, we construct several families of trees in question. They
are chemical trees and belong to specific classes of trees known in graph theory as lobsters
and caterpillars. A tree is a caterpillar if the removal of all its endvertices results in
a path. A tree is a lobster if the removal of all its endvertices results in a caterpillar.
Asymmetric trees have the identity group of automorphisms. Table 1 shows the numbers
of asymmetric trees (a,), caterpillars (c,) and lobsters (£,) that are not caterpillars with

property (1).
3. Auxiliary results

The distance of a vertex v, dp(v), is the sum of distances between v and all other
vertices of T, t.e. dyp(v) = Zu(l"(T) dr(v,u). Then the Wiener index can be rewritten as
i =
7 = — /
W(T)=5 L. dr(v).
vEV(T)

The n-vertex path P, has maximal Wiener index among all trees on n vertices {3, 19

wiey = (")

and the distance of its endvertex is equal to dp, (v) = n{n - 1)/2.
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FFigure 2. Branching vertex v of a tree T'.

In order to calculate the Wiener index for trees and their line graphs, we use two
well-known formulas.

A vertex v is said to be a branching vertex of a tree T if deg(v) > 3. Denote by B(T’)
the set of all branching vertices of T. Let 71,7, ..., T, be trees with disjoint vertex sets
and orders py,py, . - . pm, m = 2, and w; € V(T;) for i = 1,2,...,m. In general, any tree
T with more than two vertices can be represented as shown in Figure 2. Then the Wiener
index of 7" can be calculated by Doyle-Graver formula [20, 21]

wn=("1")- T ¥ ann )

4 veB(T) 1<i<j<k<m

The Wiener index of a graph can be expressed through the Wiener index of its sub-
graphs under some operations [22]. We need a simplest graph operation. Let a graph G
be obtained from arbitrary graphs G, and G, of orders ny and ny by identifying vertices

w € V(G,) and v; € V(G3). Then
W(G) = W(G) + W(Gy) + (m = 1) dg, () + (n2 — 1) dg, (1) (3)
Formulas (2) and (3) will be used for trees and their line graphs, respectively.
3. Lobsters

Consider the lobster Ty, k& > 0, shown in Figure 3. It has nyy, = 342 4 11 vertices
including two branching and five pendant vertices. Assume that the numbers of edges of

the left and right paths attached to the vertex of degree 3 are equal to
Ty = 3(k* - k+2)/2 and y = 3(k* +k+2)/2.

Note that Txy; = yp and yryy = Tk + 6k + 3 or Ty = 2 + 3 and Yy =y + 3k + 3.
Obviously, a lobster has diameter diam(Tx) = zx + yx = 3k? + 6.
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Figure 3. Lobster Ty and its quadratic line graph.
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Figure 4. Graphs for constructing L*(T}).

Since trees Ty have two branching points, it is convenient to apply formula (2) for

calculating the Wiener index. Then

3k +12 1

W(Ty) = ( g ) ~ (drgye +3(me+ e+ 1) +1) = 5 (9K® + 81K* + 290k% + 324) .

The quadratic line graph of T} is depicted in Figure 3. To compute its Wiener index,
we consequently join the paths P, -, and P, _; to the graph Gy as shown in Figure 4.
For the graph Gy, we have d(v,) = 21 and W(Gp) = 94. Let the graph G be obtained

by identifying the vertices v, of Gy and u, of Py, ;. By formula (3), we can write

Il

W(G) = W(G)+ W(Py)+ (ne,_, = 1)d(v) + (ng, — 1)d(uy)

94 + (y:) + 20 (g — 2) + 10(ye ~ 1)(ye - 2)/2

o

Il

= I}_G (OKS + 27k" + 243" + 441K® + 1124Kk” + 908K + 2016) .

The quadratic line graph L*(7}) can be constructed by identifying the vertices v, of

Gy and u; of Py ;. It casy to sce that dg, (v.) = y(yx +1)/2 + 18. Then

W (L*(T%)

W(Gl) #+: w’(Patu.--l) + (“f’xpl = l)dGz (uz) o (”Gl e l)d(uz)
= W(G)+ (23") + (zk — 2) (we(ye + 1)/2 + 18)
(yk + 8)(zx — 1)(zx — 2)/2

+
% (9k° + 81k" + 290k + 324) .
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‘T'able 2: Lobsters Ty having property (1).

kL np Tk e diam W k nr, E yr  diam W
0 1 3 3 6 162 10 311 138 168 J06 4919662
1 14 3 6 9 352 11 374 168 201 369 8582692
2 2 () 18 1678 12 443 201 237 438 14297778
338 12 21 33 8028 13 518 237 276 513 22902028
4 59 21 33 54 31282 14 599 276 318 564 35167342
S B6 33 48 81 99412 15 686 318 363 681 53340912
6 119 48 66 114 267822 16 779 363 41l 774 78188962
7 158 66 87 153 633928 17 878 411 462 873 112043728
8 203 87 111 198 1354978 18 083 462 516 978 157353678
9 254 111 138 249 2669112 19 1094 516 573 1089 217036972

This proves that the constructed lobsters have property (1). Parameters for the first
twenty lobsters are presented in Table 2.

By construction, a lobster with property (1), except the initial tree, has three sym-
metrical vertices from its brush. The initial lobster of order 11 has additionally two

symmetrical paths of equal length ©y = ¥y = 3 (see Figure 1).
4. Combs

Consider trees Ty, k > 0, shown in Figure 5. Such caterpillars are called combs. Every
comb has four branching and six pendant vertices. We construct two families of combs of
order 6k% £ 2k + 13 which start from the same initial tree of order 13 (see Figure 1),

Let combs Ty have np, = 6k? + 2k + 13 vertices. Assume that the number of edges of

long paths attached to the vertices of degree 3 is equal to
zp=3k" — 2k +2 and y, =3k + 4k + 3.

In this case, zxy; = ye and Yy = zx + 126 + 8. The diameter of Tk is equal to

diam(Ty) = 6k% + 2k + 8. Applying Doyle-Graver formula (2), we can write

) edges I I I I yx edges
Tk ——— @ e ——

N N AVZa\VZaAVV Vs
——— prmmam— ey
Lz(Tk) - Y

Figure 5. Comb T and its quadratic line graph.
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Figure 6. Graphs for constructing L?(T%).

6k% + 2k + 14)
3

= (ax(yr +6) + (2 + 2) (e +4) + (ze + D(ys + 2) + (24 + 6}

W(Ty)

1 ;
- (108K® + 108k" + 630k* + 400k® + 1296k* + 410k + 792) . 4)

The quadratic line graph of Tj is depicted in Figure 5. It can be constructed from the
graph Gy and paths P;, ., and P, _; (s'ee Figure 6). For the graph Gy, we have d(v,) = 39
and W (Gy) = 211.

Let the graph G, be obtained by identifying the vertices v, of Gg and w, of P, _,. By

formula (3), we can write
W(G1) = W(Go)+W(P,1)+ (np, ., - 1)d(v,) + (ng, — 1)d(u,)
= 211+ (1‘;") +39(yx — 2) + 13(yx — 1)(un — 2)/2
= é (27K° + 108K® + 549k* + 1144k™ -+ 1806k” + 1448k + 1584) .

To construct the quadratic line graph of Ty, one can identify the vertices v, of G, and

uz of Pr, _y. Since dg, (vz) = (yx + 3)(yx + 4)/2 + 24, we have

i

W(LX(T})) WG + W (P} + (e, = Ve, (v2) + (06, — 1)d(us)

= W(G)+ (’é") + (2 — 2)((yr + 3)(un +4)/2 + 24)
+ (ur + 1) (e — 1)z — 2)/2
= % (108K® + 108K° + 630" + 400k™ + 1296k7 + 410k + 792) . (5)

The obtained expressions (4) and (5) immediately imply property (1) for combs of the

first family.

A tree T} of the second comb family has the order ng, = 6k* — 2k + 13 and

e =3k —dk +3 and y = 3k% + 2k + 2.
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Table 3: Combs Ty having property (1).
Family 1: nq, = 6k? 4 2k + 13 Family 2: ny, = 6k* — 2k + 13
nr, Tk Yk diam W
13 2 3 8 264
21 3 10 16 1248
41 10 23 36 10148

kK nr Y yi diam W
0 13 3 2 8 W61
1 17 2 7 12 636
2 33 71 18 28 5164
7323 42 68 60164 3 61 18 35 56 34648
117 42 67 112 254336 4 101 35 58 96 162448
173 67 98 168 834664 5 153 58 87 148 574964
6
7
8
9
10

241 98 135 236 2277148 217 87 122 212 1658036
321 135 178 316 5412748 293 122 163 288 4109264
413 178 227 408 11574264 381 163 210 376 9076248
517 227 282 512 22769136 481 210 263 476 18320748
633 282 343 G28 41878164 593 263 322 588 34408764

SO =1 LW — O

=

Notice that Ty = yi and yrey = 2 + 12k + 4. Applying formmlas (2) and (3) to this

tree, we obtain the Wiener index for combs of the second family:
W(Ty) = W(LA(T})) = % (108K ~ 108K° + 630k" — 400k + 1296k — 410k + 792) .

One can see that the coefficients of the Wiener index for the both families differ only
in sign. Indeed, let ng, r}, y; and W be parameters of a comb from the first family. They
are functions of k. It is easy to see that the corresponding comb of the second family has
g =nty, o = 2%, and yx = y*,. Since Wy is a symmetrical function with respect to
and yx (see equality (4)), we have Wy = W?*,.

Parameters [or the smallest combs of the obtained families are shown in Table 3. By

construction, the presented combs with the property (1) are always asymmetrical trees.
4. Forks

The general structure of a fork is shown in Figure 7. Such a caterpillar has two
branching and five pendant vertices. A fork is almost asymmetric tree; it has a unique
two-element orbit of the automorphism group. Forks generate several infinite families of
trees having property (1). We deal with two smallest families of forks for odd m = 1.3

and for even m = 4,12

Ty edges m edges yx edges
PR S| S-S i P

Figure 7. Structure of a fork T.
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Figure 8. Quadratic line graph of fork 7.

1. Let m = 1. Forks T} of this class have ng, = 4k* & & 4 10 vertices.
la. Consider forks on ng, = 4k% ++ k + 10 vertices. First assume that k is even, k > 0.

The number of edges ol long terminal paths of the fork is equal to
Ty = (4k* = 3k +4)/2 and y, = (4k% + 5k +6)/2.

For the next tree, xx42 = Y + 4k + 4 and ypin = xx + 12k + 14. The diameter of Ty is
equal to diam(Ty) = zp + yx + 1 = 4k*> + k +6.

By (2), we can write

4K + k411
( 3 ) = ((Ck('yg G 3) * (Ik + 2) + u + (xk + Z)yk + (.’L‘k + Q)yk)

I

W(Ti)

1
75 (128K° + OGK® + 840K* + 410k" + 2011K” + 502k + 1464) .

The quadratic line graph of Ty is depicted in Figure 8. It can be constructed from the
graph Gy by joining paths P;,_, and P, _,. For the graph G, we have d(v,) = 19 and
W{(Gy) = 92. Let the graph G, be obtained by identifying the vertices v, of G and u, of
Py 1. By (3), we can write

W(G)) W(Go) + W (Py, 1) + (np, -, — 1)d(vy) + (ng, — 1)d(n,)
= 94 (’:{;) 1903 — 2) + 10(k — 1) (g — 2)/2
= 3115 (64k® + 240k® + 1452&" + 3005k + 5240k” + 4300k + 5856) .

To construct the quadratic line graph L?(7}), one can identify the vertices v, of G,

and u, of P, _,. It is easy to see that dg, (v:) = (yx + 1)(yx + 2)/2 + 16. Then

W(L*(Ty)) W(G\) + W(Pr,-1) + (np,, _, — Ddg, (v2) + (ng, — 1)d(us)

= W(G)) + (x;) + (zx — 2) ((wx + 1) (e + 2)/2 + 16)
+ (yx + 8)(ze — 1) (24 — 2)/2

& 1-15 (128K° + 96k° + 840k* + 410K + 2011k” + 502k + 1464) .
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Table 4: Forks Ty of order 45 + k + 10 having property (1) {(m = 1).

k np ye diam W k np, 3 yr  diam W
0 10 2 3 6 122 1 15 7 3 11 452
2 28 7 16 24 3208 3 49 28 16 45 18062
4 78 28 45 74 74960 5 115 G5 45 111 2441698
6 160 65 90 156 664378 7 213 118 90 209 1577780
8 214 118 151 270 3373742 9 343 187 151 339 6639328

10 420 187 228 416 12218132 11 505 272 228 501 21276242
12 598 272 321 594 35376468 13 699 373 321 695 56559602
14 808 373 430 804 87434070 15 925 490 430 921 131272488
16 1050 490 555 1046 192116738 17 1183 623 5556 1179 274889820

One can see that the Wiener indices of Ty and L*(T}) coincide.

If k > 11is odd, then forks Ty have
Tk = (4k* + 5k +5)/2 and y = (4K* — 3k +5)/2.

In this case, yx42 = 2x + 4k + 5 and 742 = y + 12k + 13, For forks with branches of

length z, and yy, one can compute the Wiener index for Ty and L*{T}):
2 1 & 5 4 3 2
W(Ti) = W(L (%)) = 15 (128K° + 96k" + 840K* + 410K" + 2011K” + 478k + 1461) .

Parameters for the smallest forks are presented in Table 4. Diagrams of the first trees
are depicted in Figure 1.
1b. Let forks Ty have ny, = 4k? — k + 10 vertices (m = 1).

Let k be even, k > 0. The number of edges of long paths of the fork is equal to
zp = (457 + 3k +4)/2 and y, = (4K — 5k + 6)/2.

In this case, zx 0 = yp + 12k + 10 and yp 0 = zr +4k+4. By analogy with the previous

cases, one can calculate that
W(T) = W(LYT)) = 11—2 (128" — 964" + 840&* — 410k + 2011k — 502k + 1464) .
Let k be odd, & > 1, and
T = (4k% — 5k +3)/2 and y, = (4K + 3k +5)/2.
We have xy 9 = yp + 4k + 3 and yr0 = 7 + 12k + 11. After calculations, we obtain

WI{T) = W{LXT)) = % (1285 - 96K™ + 840k* — 41046 + 2011k ~ 478k + 1461) .
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Table 5: Forks T} of order 4k* — k + 10 having property (1) {m = 1).

S yr diam W kK np oz v, diam %
0 10 2 3 6 122 1 13 2 6 9 288
2 24 13 G 20 1982 3 43 13 25 39 12090
4 70 40 25 66 53868 5 105 40 60 101 185258
6 148 83 60 144 524700 7 199 83 111 195 1284872
8 258 142 111 254 2813798 9 325 142 178 321 56441012

10 400 217 178 396 10548962 11 483 217 261 479 18607598
12 574 308 261 570 31276072 13 673 308 360 669 50467750
14 780 415 360 776 78640208 15 895 415 475 891 118890668
16 1018 538 475 1014 175058290 17 1149 538 G606 1145 251835032

There is a relation between parameters of forks of order 4k* + k + 10 and 4k — k 4 10
as in the case of combs. Therefore, the Wiener indices of the corresponding forks have
the same coefficients. Parameters for the smallest forks are presented in Table 5.

2. Let m = 3. Forks T} of this class have ny, = 4k? + 3k + 16 vertices.

2a. Consider forks on ny, = 4k* + 3k + 16 vertices. Assume that k is even, k > 0.

The number of edges of long terminal paths of the fork is equal to
zp = (4k* -k +6)/2 and y = (4% + 7k + 12)/2.

In this case, Ty 49 = yk + 4k + 4 and yxi9 = zx + 12k + 18. The diameter of T} is equal
to diam(T) = 4 + yx + 3 = 4k* + 3k + 12. By (2), we get

4k? + 3k + 16
W(Ty) (

5 ) — (ke +5) + (wx + 4) + yp + (x5 + ype -+ (2 + D)

1 ;
% (128K + 288k° + 1608k* + 2142k + 6055k + 3990k + 6600) .

1]

The quadratic line graph of T}, is depicted in Figure 9. It can be constructed from the
graph Gg by joining paths P, _; and P, ;. For the graph Go, we have d(v,) = 32 and

W(Gy) = 194. Let the graph G| be obtained by identify the vertices v, of Gy and u, of

Pyk"'
Gy
m — 2 edges
aret 5 5,__,_‘{__\ Bt
O cse ceo—9
Uy Yy

Figure 9. Quadratic line graph of fork 7.
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Table 6: Forks T} of order 4k? + 3k + 16 having property (1) (m = 3).

kK np oz oy diam W k nn oz oy diam

0 16 3 6 12 550 1 23 10 3 19 1726
2 38 10 21 34 8256 3 61 33 21 a7 35350
4 92 33 52 88 123948 5 131 72 52 127 362524
6 178 72 99 174 917218 7 233 127 99 229 2068808
8 296 127 162 292 4258394 9 367 198 162 363 8139538
10 446 198 241 442 14639500 11 533 285 241 529 25026546
12 628 285 336 624 40986736 13 731 388 336 727 64706400
14 842 388 447 838 08964478 15 961 507 447 957 147230164
16 1088 507 574 1084 213770798 17 1223 642 574 1219 303764678

=
K
I

W (Go) + W(

Pyk—l) o (n‘ka—'l = 1)‘“%) + (g, — l)d(uy)

= 194+ (1’;) + 320y — 2} + 120y — 1) (we ~ 2)/2

L]
48

(64K° + 336K% + 2220k" + 6055k + 14438k" + 16520k + 22176) .

To construct the quadratic line graph L?(T}), one can identify the vertices v, of G,

and u; of Pr, _y. It easy to see that dg, (vz) = (vx + 3)(yx + 4)/2 + 26. By (3), we have

W(L*(Ty))

W(G) + W (P 1) + (np, —

= W(G)+ (13") + (zx = 2)((we + 3)(3e + 4)/2 + 26)
+ (g +10)(z ~ 1)(z1 — 2)/2

l)dﬁ'l(uz) * (nGl = l)d(uz)

1
ol (128K® + 288Kk° + 1608k* + 2142k + 6055k + 3990k + 6600) .

The Wiener indices for Tj, and its quadratic line graph coincide.

If £ > 1 is odd, then forks Ty have

zr = (4k* + Tk +9)/2 and y, = (4% — k +9)/2.

Here 2,2 = yx + 12k + 15 and yr42 = z¢ + 4k + 7. Applying formulas (2) and (3), we

obtain the Wiener index for forks for odd k:

W(T) = W(I(T) = 35

(128k° + 288" + 1608%* + 2142k + 6055k + 3918k + 6573) .

Parameters of the smallest forks from the both families are presented in Table 6. Two

initial trees are depicted in Figure 8.
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Figure 8. First forks for m = 3 (cases 2a and 2b).

2b. Let forks Ty have ng, = 4k® — 3k + 16 vertices (m = 3).

Let k& be even, & > 0. The number of edges of long paths of the fork is equal to
o = (4k* 4+ k +6)/2 and y = (4k% — Tk + 12)/2.

In this case, x40 = yx + 12k + 6 and yg4p = 7 +4k+ 4. By analogy with the previous

cases, one can calculate that
W(Ty) = W(LXTy) = 11—2(128k5 — 288k + 1608k* — 2142k° + 6055k — 3990k + 6600) .
Let k& be odd, k > 1, and
Ty = (4k* =7k +9)/2 and g = (4k®* + k +9)/2.
We have zyyg = yx + 4k + 1 and ypi9 = 2 + 12k + 9. After calculations, we have
W(Ty) = W(L¥(Ty)) = {5(128;;“ — 288K + 1608k* - 2142k* + 6055k — 3918k + 6573) .

Coefficients of the Wiener index for the corresponding forks of order 4k? 4 3k +16 differ
only in sign. Parameters of the first forks for even and odd k are presented in Table 7.

Diagrams of the initial trees are depicted in Figure 8.

Table 7: Forks T of order 4k* — 3k + 16 having property (1) (m = 3).
W

k  nq, Zy  yp diam W kK nr, T yp diam

0 16 3 6 12 550 1 17 3 7 13 668
2 26 12 74 22 2534 3 43 12 24 39 12088
4 68 37 24 64 49288 5 100 37 57 97 164634
6 142 78 57 138 462868 7 191 78 106 187 1135050
8 248 135 106 244 2497426 9 313 135 171 309 5039056

10 38 208 171 382 9475850 11 467 208 252 463 16813748
12 556 297 252 552 28417924 13 653 297 349 649 46091518
14 758 402 349 754 72160008 15 871 402 462 867 109565494
16 992 523 462 988 161966238 17 1121 523 591 1117 233846500
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Figure 9. First pair of forks for m = 4.

3. Let m = 4. Forks T}, of this family have ng, = &% + k + 19 vertices. For every k,
there are two trees having property (1) and the second tree is defined by the first one.

Consider the first tree. The number of edges of long paths of the fork is equal te
oy = (k* — k+8)/2 and y = (K* + 3k + 14)/2.

In this case, T4y = Yk — 3k — 3 and ey = 2 + 3k + 5. The diameter of 7} is equal to
diam(Ty) = x5 +yp +4d = k> + k+ 15

By (2), we can write

K+ k + 20
Wty = (M5 - o 60 (o 9) k(B ()
1
= 5 (27 + 6K® + 111k" + 21267 + 1999K? 4+ 1918k + 11352) .

The quadratic line graph (see Figure 9) can be constructed from the graph Gy by
joining paths Py, ., and P, ;. We have dg,(v,) = 40 and W{(G,) = 264. Let the graph

G, be obtained by identifying the vertices v, of Gy and u, of P, ;. Then

Wi{G,)

li

W(Gy) + W(P, 1) + (np,

vi—1

= 264 4+ (y;) + 40y — 2) + 13(yg = (e =~ 2)/2

- 1)d(vy) + (ng, — 1)d(uy)

1 -
= g (K°+OR® + 141K% + T11E? + 4130k + 9312k + 33312)

To construct the quadratic line graph, one can identify the vertices v, of Gy and w, of

P, _y. Since dg, (v,) = (yx + 4) (v +5)/2 + 31,

W(L*(1)) W(Gy) + W (Pge-1) + (np

= W(G)+ (2") + (2~ 2) ((ye + 4) (ye + 5)/2 + 31)

+ (y + 10) (e — 1) (24 — 2)/2

L~ Ddg, (uz) + (nG, - 1)d{us)

1
= (2k° + 6K° + 111k + 212k + 1999k + 1918k + 11352) .
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Table 8: Forks T} of order k% + k + 19 having property (1) (m = 4).

k nr oz oy diam w k nr, I ye diam W
0o 19 4 7 15 946 5 49 14 27 45 18066
- 19 5 6 15 044 - 49 25 16 45 18044
1 21 4 9 17 1300 6 61 19 34 57 35370
- 21 7 6 17 1294 - 61 32 21 57 35344
2 25 5 12 21 2248 7 75 26 42 71 66508
- 25 10 7 21 2238 - 75 40 27 71 66478
3 31 716 27 4394 8 91 32 351 87 119894
- 31 14 9 27 4380 - 91 49 M 87 119860
4 39 10 21 35 8944 9 109 40 61 105 207544
- 3% 19 12 35 8926 - 109 59 42 105 207506

For the second fork Ty of a pair,
Ty =yp— 2 and y =xp + 2,

where z; and y; are the corresponding quantities for the first tree. By analogy with the

previous calculations, one can obtain the Wiener index for Ty and its quadratic line graph:
1
W(T,) = W(LHT)) = 5 (2K° + 6K° + 111Kk* + 212k + 1999k + 1870k + 11328) .

Parameters of ten pairs of forks T for initial values of k are presented in Table 8. Trees
of the first pair are shown in Figure 9.

4. Let m = 12. Forks T} of this family have ny, = k? — k + 59 vertices. As in the
previous case, there are two trees satisfying property (1) for every k.

Consider the first tree Tk in a pair. The number of edges of long paths of the fork is
equal to

o = (K — 3k +38)/2 and y = (k% + k + 48)/2

We have cxy1 = yr — &k — 6 and yr41 = 74 + 3k + 6. The diameter of Ty 1s equal to
diam(Ty) = xp + yx 4+ 12 = k% — k + 55.

By (2), we can write

W (T)

(k’l -k + 60

1 ) — (@xlye + 14) + (v + 13) + yi + (ze + 1)y + (o + 13)a)

i

1 ;
= (2k® — 6K° + 351k" — 692k + 20239k — 19822k + 382872) .

The quadratic line graph can be constructed from the graph Gy by joining paths P, -,

and Py, .. For the graph Gy, we have d(v,) = 140 and W(Gp) = 1412. Let the graph G,
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Table 9: Forks T; of order k* — k + 59 having property (1) (m = 12).
k np, oz oy diam w k nr, Iy duam W

1 59 18 25 55 31912 6 89 28 45 85 112052
- 59 19 24 55 31906 - 89 39 M &5 111986
2 61 18 27 57 35350 7100 33 52 97 164640
- 61 21 24 57 35332 - 101 46 39 97 164562
3 65 19 30 Gl 42942 8§ 115 39 60 111 244222
- 65 24 25 61 42912 - 115 54 45 111 244132

4 71 21 34 67 56252 9 131 46 69 127 362572

71 28 27 67 56210 - 131 63 32 127 362470
5 79 24 39 75 77926 10 149 54 79 145 535546
- 7 33 30 75 77872 - 149 73 60 145 535432

be obtained by identify the vertices v, of Gy and uy of P, _;. Then by formula (3)
WG} = W(Go) + W(Pyt) + (ne, ., — 1)dvy) + (e — 1)ed(uy)

1412 + (1?) + 140(yk = 2) + 21 (ye = 1) (ws — 2)/2
2
48

I

(K® + 3&% + 267K* + 520K + 21308%” + 21044k + 567792) .

By identifying the vertices v; of G, and u, of P, _;, one can construct the quadratic

line graph of the fork. Tt easy to see that dg,(v;) = (yx + 12)(yx + 13)/2 + 71. Then
W(LHT:)) = W(G1)+ W(Pra1) + (np,, — D, (vs) + (ng, — 1)d(us)
= W(Gy)+ (;;) + (2 — ) ((ue + 12) (v + 13)/2+71)
+ (yi + 19)(zx — 1) (e — 2)/2
= % (2K" -- 6% + 351k" — 692k° + 20239%% — 19822k + 382872)
The second fork 7 of a pair bas
Ty =9y —0 and y =2, +6,

where 2, and y, are parameters of the first tree. Then the Wiener index is equal to

W(T) = W(EAT) = 3 (

2k5 — 6K° 4 351%% — 692K + 20239k — 19966F -+ 382044) .
Parameters of the smallest forks of this family are presented in Table 9.

Suppose that forks T} have ny, = k2+4-k+59 vertices. Note that np, =N Tk = T
and y, = y;,_, for k > 2, where n', 2’ and y' are the corresponding quantities of the first

tree of order k% — k + 59. Therelore, forks of order &2+ k + 59 (m = 12) form one family.

In conclusion of this section we remark that there are many other families of forks

having property (1).
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Conclusion

The Wiener index for trees and their quadratic line graphs are considered. Several
infinite families of chemical trees with the property W(T) = W/(L2(1)) are presented.
All the constructed trees are caterpillars or lobsters. Combs are asymmetric trees. Do
there exist other trees having the structure of the considered lobsters, combs or forks and
satisfying property (1)7 Except two examples (forks with m = 5 of order 23 and 24),
our families contain all such trees on n < 26 vertices (sce Tables). Based on data of
Table 1, we believe that almost all trees having property (1) are chemical trees. We also
conjecture that all such trees have vertices of degree 2. Note that trees of the presented
infinite families have only two long paths attached to its centers.

Problem. Construct an infinite family of trees satisfying equality W(T') = W (L*(T))
such that they have several paths growing from its centers.

The following question on iterated line graphs of high power was formulated in [18]:

Question. For n > 3, does there exist a tree satisfying equality W (T) = W(L*(T))?

Attempts to find such trees lead to the following conjecture.

Conjecture. There is no tree satisfying equality W(T) = W(L"*(T)) for any n > 3.
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