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Abstract. A C4Cg net is a trivalent decoration made by alternating squares C, and octagons
Cg. It can cover either a cylinder or a torus. Such a coverir.g can be derived from a square-net
by the leapfrog operation. This paper presents a method for deriving formulas for calculating
the sum of all distances, known as the Wiener index, of the C4Cg nanotubes.

INTRODUCTION

Fullerenes and nanotubes are promising candidates in the development of nanodevices
and superstrong composites. They have aroused both theoretical and experimental interest.'™
Besides the well-known Cg and Cg, other cages have been isolated in solid-state. Recently,
the small cages Cyq and Cyy were reported and their halves used for modeling capped narrow
nanotubes.””

Let G = (F, E) be a connected graph with the vertex set V' = F{G). For vertices
i,jeV(G) we denote by d(i. j) the topological distance (i.e., the number of edges on the
shortest path) joining the two vertices of . The Wiener index'® W of the graph G is the sum

of distances over all its distinct vertex pairs (7,/):

W=H(G)= 3 dii, ) k)
(. /)
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Mathematical aspects related to the counting of distances in nanotubes covered by
squares and octagons C4Cg, as well as the relationship of this covering with the square tiled

nanotubes, by the leapfrog operation, will be illustrated in the following.

CONSTRUCTION OF TUC,Cg NANOTBES

The C4Cy covering is related to the square net tessellating a cylinder.''"? Let a square
C4 be the unity polygen U/ submitted to some well-known operations on a map M.'*" It is
easily seen that the square stellation, followed by dualisation, leads to the “rhomb”- net (ie.,
“bathre vm floor” net - Figure 1, first row), which.is symbolized as TUC,Cy(R) [e,n] w' 2n it
covers a tube (i.e., a cylinder). The medial of U leads to the “square”-net TUC4Cy(S) [c,n] (the
second row in Figure 1). Clearly, the sequence Du(St(w)) = Le(M) is equivalent to the

leapfrog Le operation.'*"

Ci=U Stellation = S{U) DuSILY) = Le(U)

Medial = Me(U) St(Me(l))) = Sm(U) Du(SiMe(Ly)) =
Le(Me(L))

Figure 1. Map operations on the-square unity U polygon.
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Figure 2 shows assemblies of the above leapfrog units.

Du(SHLD) = Le(l)) Du(St(Me(U)y) = Dsm(U)
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Figure 2. Assemblies of the leapfrog units derived from the square.

Optimized C4Cg nets covering a nanotube are illustrated in Figure 3. Such nanotubes

could appear by successive low energy Stone-Wales'® edge flippings in polyhex nanotubes.'’
PP b g

TUC,Cy(S) (28,80] TUC4Cs(R) [24,64)

Figure 3. Nanotubes covered by C4Cjy nets.

In the name TUC4Cg(R/S) [c,n], the first letter ¢ in the brackets is the number of atoms
in the cross-section while n denotes the number of cross-sections along the tube. The number

of points (i.e., atoms) in the molecule is ¢ x n.
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WIENER INDEX OF C4Cg (SQUARE) NANOTUBES

The method for deriving analytical formulas which calculate the Wiener index in C4Cy

nanotubes is similar to that developed in refs. %"

Method. Let us denote by p the number of squares at level 1 in the tube and by &, m, ¢ the

various levels (i.e., the length) of the tube (Figure 4).

Figure 4. Distance sum from a vertex v to vertices lying at levels & =1..6 and 1..4

The sum from a vertex v lying at level 1 to all other vertices on the same level 1 is
given by:
s(p)=4p° 2)
There are two types of vertices: those not located on a square and vertices that lye on a
square. For levels in the rangel < & s p +1, there are two different distance sums from vertex
v to all vertices lying at level &:

[f v does not belong to a square, then:
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Sppky=4p* +2(k-DQ2p+k) (3)
Otherwise,
S (P k) =4p +2(k-1)2p+k-2) (4)

The distance from all vertices lying at level 1 to vertices at level k, 1<k<p+l is

given by:

s (pk) = P2 s (PR + 25, (D KN =8p- (297 + (k=D2p+k-D] ()
The distance from level 1 to level p+1 is:

s,(p)=40p° (6)
The total distance sum from level | to all levelsup tom, 1<m< p+1 is:

sta(pym) =3 54 (p. ) =4 pm [4p? 4%(m ~1)2m-1+6p)] )

k=1

The total distance sum from level 1 10 levels until p+1, is:

st (p)=4p*(p +1)i4p+—;-(8p+ ] ®)

Calculate now the distance sums from all vertices lying on level 1, as follows:

The distance sums to vertices on levels k> p [:
sl (pk)=40p> +32p k- p-1) (9

The total distance sums to all vertices in a tube having the length m, m>p+1:

+] m
s!lm(p,.vn)=tsk(p,k)+ ZSJ.&(P-J‘) (10)
k=1 k=p+2
sty (p,m) = st 5,0 (p)+ 40/);(m -p-1)+ lépz(m = p)m=p-=1) (1)

By substituting (8) in (11) it becomes:
sth, (pm)=4/3-p*(12-m* +6-m-p—12m+2p" +3p+1) (12)

Now we are ready to calculate the Wiener index in a short tube, TUCsCs(S) [4p.q)

with the length g < p+1, as:

1
W:(pvq)=5[2-isfm(p.m)—q-‘lp-sl(p)] (13)

m=1

and after replacing sta(p.m) as in (7) and 5,(p), the final formula is:
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W, (p.q)=

W |t

q-plg+1Xg° +4-q-p-g-4p+12-p")-8.q-p’ (14

The subtraction of the last term in (12) is reasoned as follows: the reference vertex v
may be located at any level m, 1 <m < p+1, each time looking at TUC,Cyg(S) [4p.g] as being

obtained by two smaller tubes sharing a common level, namely that containing the vertex v. It

is obvious that the actual level of v is counted twice.

If g=p+1, the formula (14) for calculating the Wicner index becomes:

2
Wp+,<p):;p2(p+l)(l7-p2 +23p+2) (15)

The Wiener index in a long TUC4Cg(S) [4p.g), ¢ > p+' 18

+1
(0.0 =125 stn (42 3 sty (pm)—a-4p-5,(p)]
2 m=] m=p+2 (‘6)

=W (P + isrfm(p,m)—S-p3~(q—p—l}
m=p+2

and after replacing W, 1(p) as in (15) and st/(p,m) as in (10) the final formula is:

2
’V;(p,q):;pl(!i-q3 ~p 4 plgr6-p-g’-6-g+p) (17)

Numerical data for Wiener index in tubes TUC4Ca(S) [4p.¢] of various dimensions are

given in Tables 1 and 2 (see eqs. (14) and (17)).

Table 1. Wiener index in short tubes, sSTUC4Cy(S) [4p.g], g < p+1

P g w P4 W

4 2 2336 ! 2 4440
4 3 5824 5 4 20800
4 4 11392 5 5 35000
4 8 19520 5 6 54200
6 & 18144 i 3 28168
6 4 34368 s 4 52864
6 5 57120 7 6 132104
6 6 87408 7 7 189336
8 S 126080 7 8 260288
8 6 190016 3 2 1032
8 8 369664 3 3 2664
8 9 489216 3 4 5376
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Table 2. Wiener index in long tubes, ITUC4Cg(S) [4p.g). g2 p +1

p g w p q w

3 6 15192 5 6 54200
4 5 19520 5 7 79200
a 6 30720 S 8 110800
4 T 45504 5 9 149800
7 8 260288 5 10 197000
7 9 346528 5 13 395800
8 10 631296 5 20 1296000

Formulas for calculating the Wiener index in C4Cy(S) tori were given elsewhere.”®

WIENER INDEX OF C;C3(RHOMBOIDAL) NANOTUBES

Method. We denote with p the number of thombs on the level | and with &, m, g the various
length of the tube (Figure 5).

SH=‘28
A=18

Sip= 56

S5=47
A =20
S;\ =27

Figure 5. Distance sums from a vertex v to vertices lying at levels k = 1.4 and 1...2

We obtain two formulas: one for the tube length g<(p+1)/2] and one for
q2[p+1)/2]
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There are three types of vertices at level 1: vertices lying on the outside part of the
rhomb — vy, vertices that are on the inside part of the rhomb — v;, and vertices located on an
octagon — vy,

The sum of distances from v, and v; to all vertices lying at level k = 1 1s given by:

NP
su(p)=3-p 1+ L2CD] (18)
The sum from v; (which is on the octagon) to all vertices lying at level k = 1 is:
sy(p)=3-p? (19)

The sum from all vertices on the level | to all others vertices at the same level 1 is:

[1+(-1)"])
2

si(p) =2 plsyy(p) + 513 (P) =2+ pl6- p* +1+ (20)

For levels in the range | <k <int[(p +1)/2], there are three different distance sums from level
1to level k:

From vertex v;:

s,k(p,k)=3p2+|+w1+4(k-n(zk+p) n
From vertex v;:

s}j(p,k)=3pl+1+E~t€;—l-m+4(k—l)(2k+p—4) (22)
From vertex vy:

sy (k) =3p2 +4(k-1)2k + p-2) (23)

The distance fromn all vertices lying at level 1 to vertices at level k, 1 <k <int[(p+1)/2] is
given by:
S (2o k) = pls) (k) + 59, (0, k) + 253, (p. k)]

(24)
= p12- p? +3+(=1)7 +16(k - 1)(2k +p—2)]

The distance sum from level 1 to ail levels up to m, where 1 < m <int[(p +1)/2]is:
m
St (pom) = Zsh(p,k}:%p~m-[36p2 +24-p-m+32m? —48m -24p+25+3-(-1)"]

k=1

(25)
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The Wiener index for short tubes (length ¢ is | < ¢ <int[(p+1)/2]) is calculated as:

W,(p.qJ=~;[2 iwm(pm)w--ﬁ(pJ] (26)

m=l]

and after replacing st (p.m) as in (25) and s;(p) as in (20}, the final formula is

W(p) =g p6-9> +16-p-g? 436 p7 g +3.9-(DP =T.g-16-p) 2D

For calculating the Wiener index for long tubes, we derived formulas for three
different tube length:

Case (1): g =int{(p+1)/2}+1.
The distance from all vertices lying at level 1 to the last level:

Supt(P) = pI28- p +12p(1= (=1 ]+3-(-)7 - 1] (28)
The distance sum from level | to all levels up to m=int[(p +1)/2]+1 is

28 79 17 1.3
St (P) = P #2707 =T D7 4 = p=Tp oD =S (D) (29)

The Wiener index of a tube of length g =int{(p +1)/2]+1 is

. s
W (2) =W, (pitl(p + D/ 2 sty () - 22 (30)
W,i(p)= 2’;4[48;;“ +280p° - 56p> (~1)P +507p? - 207 p2(-1)? a1
+302p —190p(~1)" = 511 =(-1)?]]
Case (ii): g =int[(p+1)/2]+2.
Analogously, the Wiener index of such tubes is calculated as:
-y 4 8.0 Iy 2 . 2, 1\P
Wpr(p) = 22148p" +5045° ~56p°(-1)F +1683p” ~375p7 (=) 32)

+2058p - 682 p(-1)P — 1471 - (-1)* ]
Case (1i): g >int[(p+1)/2]+2.
For tubes of the third length, the distance from all vertices lying at level | to vertices

atlevel k zim[(p+1)/2]+2 is:

2p+1-(-1)" +§_

sy(pk)=p-[28-p* =12p(=1)" +60p =21 - (=1)" | +12-4- p[k - "

n 63

The distance sum from level 1 to all levels until level m, where m 2 int[(p +1)/2]+2 is
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31
Stlp,m) = p-[% p] +4,t12n't+24,r)m2 +4p2 —24pm=-2m[l -(-1)" ]+ ?p

(34)

: 1 5

e (L0 | o e ), - NN

2.0( } 2( ) +2]

e g
If we take 1, =int[(p+1)/2]+2 =M then the Wiener index will be:
; =) sy(¢

Wpu) =W o)+ Sst(pom) - S 2L 02D 09)

2

m=ly+l
and after replacing Wp(p.q) from (32), stwip,m) from (34) and 5,(p) {rom (20) the fjnal
formula is:
Wi(p.q) = %51[417‘ -48p’q? —192pg” ~32p’°q+ 24 g’ 1-(-1)"]- p ~3p*(-1)7 +
+68pg +12pg(-1)F =31~ (-1"])
(36)

Table 3. Wiener index in TUC4Cg(R) Nanotubes,

p qg Wpg J4 q Wy
q 2 1952 6 27 6000

4 3 5312 6 3 15228
4 4 11232 6 4 30516
4 S 20480 6 5 53580
4 8 75872 6 6 86148
4 10 143520 6 7 129948
5 1 75§ 7 2 9268

5 2 3580 7 3 23065
5 3 9355 7 4 45360
5 4 19210 7 5 78407
5 S 34345 7 6 124558
5 8 123430 7 7 186165
5 9 171685 7 10 487242
8 3 33424 9 3 46359
8 4 64768 9 4 88848
8 5 110464 9 5 149895
8 6 173568 9 7 342837
8 7 257152 9 9" 656163
8 8 364288 9 10 867690
8 10 661504
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Note that the final formula (36) includes both formula (32) (which calculates W,»(p)

for the tube length ¢ =1,

LY
= QJ}J%:? ) and (31) (in the calculation of W,i(p), for the

tbe length g =/ =[2p+1-(-1)" +4]/4).

Examples are given in Table 3 (see eqs. (27) and (36)).

CONCLUSIONS

A C4Cg net can be derived from a square net by the leapfrog operation. [t was used, in
two variants, “square”- C4Cg and “rhomb”- C4Cg for covering the nanotubes. Formulas for

calculating the sum of all distances in such nanotubes are derived and examples are given.
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