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ABSTRACT

The Wiener number HA(G) of a graph G was introduced by 1. Wiener in connection
with the modeling of various physico-chemical, biological and pharmacological properties of
organic molecules in chemistry. The Wiener number H(G) of a graph G is defined as the half
of the sum of the distances between every pair of vertices of G. As such there is no exact
formula to determine the value of #(G). though there are some, for particular class of graphs.
In this paper, we found some upper and lower bounds for W(G). in terms of other graph-
theoretic parameters, like radius, diameter, order, size, independence number, connectivity

and chromatic number,
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1. Introduction:

The Wiener number or the Wiener index W= W(G) ol'a graph G was put forward in
1947 by Harald Wiener'. Its applications in the modeling of various physico-chemical,
biological and pharmacological properties of organic molecules are outlined in several
monographs’ ! and reviews® ~ °. Wiener number is used in the study of ultrasonic sound
velocities in alkanes and alcohols', rates of electroreduction of chlorobenzenes'', cytostatic
and antihistaminic activities of certain drugs', protonation constants of derivatives of
salicylhydroxamic acid and their fungicidal activities', isomerism of fullerences'™.

Harald Wiener' defined the parameter W(G) of a graph ¢ when G represents the
skeleton of carbon-carbon bonds between all pairs of carbon atoms of alkanes and he
considered the Wiener number H{() o be the sum of the distances between the carbon-
carbon bonds of alkanes and this parameter has been examined in various context namely
Hc)syau in 1971 and examined the relation between B and the distances in molecular graph.
The molecular graph G, we mean the molecular structure of hydrocarbons by deleting the
hydrogen atoms or simply the relationship between the carbon-carbon bonds of a molecular
structure®. For example in the Fig. 1, gives the picture of a molecular structure of benzyl and

the corresponding molecular graph.

1\ C/ H
|.
Hag Vg i &
|| |
“/f‘\ c/c\ H

1
Fig.:l

Hence all molecular graphs are connected and hence, in general, throughout this paper

we consider the connected graphs only while estimating its Wiener number.
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As pointed out above, the Wiener number of a graph is studied in various context such
as for predicting the boiling point of alkanes based on the formula: Boiling point = al +
Pw(3) + y, where «, f, y are empirical constants and w(3) is the so-called path number,
namely the number of pairs of vertices whose distance is equal to three. This type of
applications has been studied in a series cal'paperslts =it published during 1947 and 1948.

The Wiener number of a graph G is also considered independently by F. Harary” in
sociometry, called total status of a graph denoted by #5(G). If each vertex represents an
individual in a society and two vertices are adjacent if there is a interpersonal relation exist
between them. Hence a status of an individual or a vertex v in G denoted by s(v) and is
defined as the sum of the distances between all other vertices of G to v and hence in this
context, the Wiener number HAG) is going to be (1/2)Zs(v), where v € W(G).

As mentioned above, the concept of status has been introduced by F. Harary®® and
further studied by B. Zelinka®' and R. C. Entringer, D. E. Jackson and D. E. Snyder””. Also it
has been studied in the context of centrality of a graph, that is, the median graphs by G.
Sabidussi® and G. S. Bloom, J. W. Kennedy and L. V. Quintas™. This parameter has also
related to many other topological indices like Hyper Wiener index, Quassi Wiener, Kirchhoff
indices, Harary indices, Szeiged indices, Cluj indices and many more. For details see?®.

Le1 G = (V, E) be a graph on n vertices and m edges where Vis vertex set and £ be the
edge set. Thus | ¥| = nand | E] = m. A sequence of vertices v, v, ..., v is said 1o be a path
of length k¥ — 1 on & vertices if v, + isanedge in G fori= 1, 2, ..., k— 1. The distance
between pair of vertices v, and v; is denoted by d(v,, v;) is equal to the length of shortest path
joining v; and v; in G. So the Wiener number #(G) of a graph G is defined to be

WG) = 2 dv, v) M
i<j

The Wiener number also be defined by considering so-called the distance matrix of a
graph G denoted by IXG) and (i, )" entry in IXG) is equal 10 d(v;, v;). So the sum of the
elements of * row of IXG) is equal to

n
2 dvi, %)
Jj=1

where 7 is the number of vertices in G and now H{G) is tumed out to be
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H n
a2) 2. 2 dw.v)
f= U e

The distance number of a vertex i of a graph G denoted by d(u | G) and is defined as’

diu| Gy = X du, v) 1))
ve KG)
Then WG) = (112)2. d(u| G) e
ue MG

For example: Consider a graph & with vertices vy, v, v3 and v4 as labeled in the Fig. 2.

Vi

vy V4

Fig. 2: G

Here divy, va) = 1, d(vy, v3) = 2, d(vy, vg) = 2, d(v2, v3) = 1, d{va, va) = 1, (w3, va) = 1.
Therefore W(G)= 2, dv,v)=1+2+2+1+1+1=8.
i<j
Also d|G=1+2+2=5 dwl|G=1+1+1=3,
dv|G)=2+1+1=4, dw|G=2+1+1=4
4
Therefore  W(G)=(1/2) 2. d(v,| Gy = (1/2)[ 5 +3 +4 +4] =8.

i=1



The Wiener number of a graph has been calculated for particular class of graphs
namely path Py, cycle C,, star K, - |, complete hipartite graph X, complete graph K, and
many more. But as such there is no exact formula for finding a Wiener number of a general
class of graphs, not even a recursive formula. But some recursive formulae can be oblained
for certain class of trees and even a general class of trees. See™

For any tree 7 on n vertices, the star K, . ; has the lowest Wiener number and the
path 7, has the largest Wiener number” and so we can conclude for any tree 7 on # vertices

W(Ky 1) < W(T) < W(P,). (4)

The question arise here what are the lower and upper bounds for the general class of
graphs G. In this direction, the only known result can be found in 2 with the help of lower
and upper bounds on a status s(v) of'a vertex v, that is, n — 1 < s(v) < {((n - 1)(n—2)/2) - mby
Entringer, Jackson and Snyder.

In this paper, we derive various bounds for #(G) in terms of the number of vertices,
the number of edges, radius, diameter, vertex connectivity, independence number and
chromatic number. These terms will be defined as and when require. For any other terms, the

reader may refer books?” **,

2. Bounds for W{G} in terms of order, size, diameter and radius:
Let G = (¥, E) be a graph and v be any vertex in . The degree of a vertex v in G is
the number of edges incident to it and is denoted by deg(v). The eccentricity e(v) of a vertex v
in G is defined to be
e(v) = max{d(u, v) |2 e V) 5
The radius and diameter of a graph & are denoted by rad(G) and diam(G) and defined
by
rad(G) = min{e(v) |v e V} (6)
and diam(G) = max{e(v) |v e ¥} )
The following theorem gives the exact value of the Wiener number W(G) in terms of
its order and size, when diam(G) < 2.

Theorem 1: Let G be a graph of order # and size m. Then W(G) = n' —n — mif and only if
diam(G) < 2.
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Proof: suppose G be a graph of order n and size m with diam(G) < 2. Define the sets 4 = {u
€ V| e(uy=1}and B={n e V| e(1) = 2}. Then, |A| + !B| =pn.lfue A,Lhend(u\G)=n
— 1 and if v € B, then define two sets By and B; as By ={v € V|d{u, vi=l}land B ={ve V
| (s, v) = 2},
Then, d(u|G')= |Bi| +2|Bg|

=8|+ 8|+ |8l

=n-1+m-1-|mD since |Bi| + Bl =n-1
i L)
2n -2 —deg(u).

Therefore,  W(G) = (112) 2 d(x| G)

nweV
=) X dul G+ (12) 2. dl G}
ueAd ue B

= (U - D] A4] + @n -2 - deg(u))| B|}

={n-vlal +@n-2) 1Bl - Ydegtw }

ue B

=amf{n-Dlal + 181+ -1y 1B - Xdegtra }

ue B

= {ntn 1)+ (- D - [4]) - Xdegtw) }

ve B

=) {nn— 1)+ nln - 1) = (n- 4| = 2degn }

veB

=) {ann - )~ Ddeg(u) — 2 deg(u)}.

ueA ue B
=2 {2ntn - 1)~ ( Ddegu) + 2 deg(t)) }.
neAd ve B

=2 {2n(n- 1) Ddegw)}.

ue V
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= (12)(2n(n = 1) - 2m} since 2 deg(u) = 2m.
veV

=n1—n—m
which proves the one part of the proof.

On the other hand, suppose that W(G) = n* — n — m. We prove that dian{G) < 2. For, if
diam(G) = k2 3 and let ¥ € V be an arbitrary vertex in G, then define the sets 4 and Bas A =
fue V]em=2}and B={ue V| e(v) >3}, where |4| + |B| =n. 1fu € 4, as in the
proof of the above part, we can prove that d(u| G) = 2n - 2 - deg(u). If u € B, define three
sets By, By and B, as follows:

Bi=(veV|lduw=1},B={ve V| duv=2)and Bs={ve V| du v) 2 3).
Clearly, | B + |Bo| + B3] =n—1.
~dw|Gy2 |Bi| +218,| +3|Bs]
=8|+ B + |8 + | B +2|8]
=n-1+|B| + B + | Bl
=(n-1D+@-1-|B])+ |8l
=252 — deg(u) + | Bs|
22n-—-2—deg(u)+ 1 since |B;| 21
=2n-1 - deg(u).
~W(G) = (172) Q. d(u | G)

ue VvV
=(12) 2 du |Gy + 2 du |G)

ueAd ue B
2 (1/2){(2n -2 - deg(u)) | A] + (2n -1 - deg(u))| B|}
=a{@n-2)(l4| + | By~ 2 deglu) + 2. deglu}y + | B] }

ued uweEB
=(1f2){2n(n— 1) - Zdeg(u}+ lB|}
ne V
=(1/2){2n(n - 1)~ 2m+ | B|}
=n(n-1)-m+(172)| B
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>nn-1)-—m+1, as |B|2 2, since there exists at least two vertices of
eccentricity greater than or equal to three, as diam(G) z 3.
" W(G) 2 W~ n—m+ 1, a contradiction 1o the fact that W(G) = n* — n — m, which

completes the proof.

Theorem 2: For any graph G of order n, size m with diam(G) > 3,

MG zrn —n-m+1 (8)
holds. Further, the equality holds, if G contains exactly two vertices of eccentricity three and
rest are of eccentricity two.

Proof: The proof follows from the proof of Theorem 1.
Theorem 3: Let G be a graph of order n, size m with diam(G) = rad(G) = 3, then

W(G) < (1/2)n(3n — 5) — 2m (9)
Proof: Suppose G be a graph with diam(G) = rad(G) =3, then e(u) =3 for every vertex uin G.
Define the sets A(w) = {v e V| d(u, v)=1i} fori=0, 1,2, 3.

¥
Clearly, |ud()] = n.
i=0

[As) | + | s | = =1 - deg(u) (10)
since | Ao | =1 and [ 4,)| = deg(u).
Also, IA;.(u)i 2 2, for, otherwise, there is a vertex w € Ax(x) such that e(w) < 2, a
contradiction, Thus,
dul Gy = X dw, vy
ve V

= 4] + 21400 + 3] 4500

= deg(w) + 2(| Aa(w) | + |43 |} + | 4500 an
But. |dw)| =n—1-deg(u)- | Axw)|,  from (10)
<n-1-—deg(u)-2, since IA;(u)| >2.
=n—3 —deg(u).

Therefore (11) becomes,
d(u| G) < deg(u) + 2(n — | — deg(u)) + (n~ 3 — deg(u))
=3n-5-2deg(u).



Thus, W(G)=(1/2) z Ku | G)

ueV

=(112) 2. (3n -5 — 2deg(u))

weV
=(112) [n(3n - 5) - 2 2. deg()]
wuelV
=(1/2)n(3n = 5) - 2m.

This completes the proof.

Theorem 4: Let GG be a graph of order n, size m and diam(G) = rad(G) = k 2 3, then
W(G) 2 n* —n—m+ (n{k - 22 (12)
Proof: Suppose diam(G) = rad(G) = k. Let 1 be an arbitrary vertex in G and let us define the
sets A1) as ) = {v e V | du, v)=i},fori=0,1,2, ...,k
Therefore  d(n}] Gy = | 4,(1)] + 2| 4200 | + 3| A€} ] + ... + k| die) |
= deg(u) + 2| ()| + |43 | + ...+ | A |)
+1A4y0] 2l 4| + L =2 G )
= deg(u) + 2(n - 1 - | 4| + | 43| + 2| 4i)])
o+ k- 2) | A ))
= deg() + 2(n - | - deg(w)) + | As) | + 2| 44(a)]
+ ot k=A@ | + k-2l D
22(n - 1) —deg(u) + 2+ (2)(2) + (3)(2) + ... + (k=3)2) + (k=2)(1)
Since | 400 22, fori=2,3, ..., k—1and | 4| = 1.
Therefore  d(u| G) 2 2(n — 1) - deg(u) + 2((k - 3)(k - 2)/2) + k-2
=2(n—-1)~deglu) + (k-2)".

Therefore  H(G)=(112) 2, &u| G)
ueV

2 (112) 2, [2(n - 1) ~ deg(u) + (k~2)’]
weV

= (L/2))2)(n — 1) = m + (1/2)n(k - 2)

=i —n—m+ (1/Dnk-2)
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lHence the inequality.
Remark: The bounds in the Theorem 3 and 4 are sharp, in the sense that the upper bound in
the Theorem 3 is attainable, iff G = Cg and the lower bound in the Theorem 4 is attainable, it

G = Gy, for n being even.

3. Bounds for ¥(G) in terms of the vertex connectivity, independence number and
chromatic number:
The vertex connectivity 4(() of a graph G is defined to be the minimum number of
vertices whose removal from G results into a disconnected or a trivial graph. A graph G = G,
+ G2+ ... +Gyis the graph obtained by joining each vertex of G; 1o all vertices of G, 44, 1

<i<k(see’).

Theorem 5: Let G be a graph of order n, connectivity &(G) and Hy, H,, ..., H; be the

connected components of G - S, where sl = KG), then
WIG) 2 n(n = 1)2+ Kn—1 - KG)) (13)
Where /= min{ | MH)|}
1<gigt

Further, the inequality (13) holds if and only if G = K, + K, + K, ) . g, where & = k().
Proof: Let G be a graph with n vertices and S be any cut set of G with || = KG).

Let Hy, Ha, ..., H, be the connected components of G — § with /= min{ | mH) |y
1€i<t

!
Without loss of generalitv, assume that | V(Hl)| =[G = H and Gy = UH,.

i=2
‘Then, V(G|)| =/and | WG| = n—k-1. Now we have,
WG) = (112) 2. d(u| G)
ueV
=) [ X dul6)+ X dul Gy + 2 dwl @] (14)
ue MG)) wues ue V()

Now we consider the following three cases, for any arbitrary vertex » in G.
Case I: Let u € KGy).
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Then,  d@lG)= 2 d(u,v)
ve MG)

= Z du, v) + z d(u, v) + Z (i, v)
ve MGy) veS v e NGh)
(1= 1)+ k(G)+ 2(n— - K(O)
=2n-1-k-1.
Since de, v) 2 1, ifv e MG)), v e Sand d(u, v) 22, if v € WGh).

Case2:letueS.

Then, dlu I G)= z d(u, v)
v e VG
= 2 du, )+ 2 d v+ 2 du, )
ve NG) veS ve NG)
2l+k-1+tn-1-k
=n-1.
Since d(u, v) = 1, if v is in either sets ¥(Gy), S and HGa).
Case 3: Let u € M(G), then we can prove that d(u| G) 2 n + 1~ 1 as in the Case 1.
Thus, by (14) we have
WG 2 (D@ -1 —k=DI+(n—Dk+(n+1-1)n—1-k)]
=(n(n - 1)2) + l(n -1 - kKG)).
The second part of the theorem follows from the proof of the inequality itself.

A subset S of a vertex set ¥{() of a graph G 15 said to be an independent set, if no two
vertices of S are adjacent in G. The independence number Bo(G) of G is the maximum
number of vertices in the independent sets in G. The following Theorem will gives the lower
bound for () in terms of the order of G and the independence number Bo(G) = fo.

Theorem 6: Let G be any connected graph of order n, then
W(G) 2 (172)[A(n — 1) + Po(fo— 1)] (15)
The equality holds if and only if G = f(m + Koo p.

Proof: Let S be the maximum independent set with | S| = o and #, be any vertex in S.
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I'hen, &1y i G) = E d(u,. 1)
u e MG)

= 2y, u) + 2 e 1)

yesS e V-8
22(fo — 1)+ (1~ )
=i P2, (16)

Since 14 # 1y and 1; € S, so that there are (3o - 1) vertices in S which are at a distance at least
two from w, and d(;, ) 2 1, forany u, € V- S.
Next, let u; € V-8, then
d(u; E Gy = Z a1, 1)
1y € MG)
>p-1 (17)

Therefore  HAG) = (1/2) 2., d(u,| G)

u; € G)
=) [ 2 dwl o+ 2 daul 6)]
u €S e V-8

> (1/2)[foln+ Bo—2) + (n— fo Xn— 1)} from (16) and (17}
=(1/2)[m(n = 1) + Po(flo - 1)].
Further, if G = K’m + K, - m, it is not difficult to see that W(G) = (1/2)[n(n — 1) +
Bo(Po - 1.
Conversely, suppose W(G) = (1/2)(n(n — 1) + Bo(Bo — 1)]-
We prove that G = Kpm + Ko - . If possible assume that G # K + K. . m. Let S be the
maximum independent set with | 5= fo in G. For any two vertices # and v in G, d(a, v) =2
if both v and v are in S and a(n, v) = | if both ¥ and v are in V' — S, otherwise, it will lead to
(G > (1/2){n(n = 1) + Bo(Bo— 1)), acontradiction. Thus <S> = A_{gp and <V-8>=K, m.
Further, if v € Sand v € V' S, we claim that d(x, v) = 1, for, otherwise
2 du|G)>n-p.
vesS
and thereby  W(G) > (1/2)[n(n — 1) + Bo(fo — 1)] holds, a contradiction.
Thus G = Kp + K. g holds.
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Next Theorem deals wath the lower bound on M(G) in terms of the number of vertuces
and the chromatic number of G.

A coloring of a graph ¢ is an assignment of colors to its vertices in such a way that no
two adjacent vertices have the same color. The minimum number of colors in any coloring of
G, is called the chromatic number of G and is denoted by x(G). The set of all vertices with
any one color in a coloring of G is independent and is ~alled the color class of G. A graph G
= K, m2, ., ak 15 52id to be complete bipartite graph if its vertex ¥(() can be partitioned into
disjoint sets ¥, ¥, ... V3 where [ ¥,] =1, such that no two vertices in any V,, 1<i < kare

adjacent and each vertex of ¥ is adjacent to all vertices of ¥, 1 <1, j < k (for details, see %,

Theorem 7: Let G be any connected graph of order » with chromatic number %(G) = ¢, then
W(G) = (1/2)|n(r + 1) - 24) (18)
Further the equality holds if and only if G = Ka1 a3, . ar

Proof: Suppose %(G) = 1, then the vertex set {G) of G can be partitioned into f color classes

Cy, Cs, ..., G such that no two vertices in any C; are adjacent and let |G| = n,, fori=1,2,

Thus n= Z H;.

Letwe C,fori=1,2,...,1

Then, du|G)y= 2, d(u,v)

ve NG)
= 2 dw,v)+ 2 dw, v)
ve C ve V-C;

z22(n - 1)+ (n-n)
=n-m-2.
Since d(u,v) =22, ifve Cand d(i, v) = 1, ifve V-C.

Therefore, W(G)=(1/2) 2. du| G)
ue MG)
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—am [ Y X dulo)]

i=1 weC
!
>(i1/D) 2, (n+n—2)

=
f

=2y [mt 2 m - 2]

i=1
=(1/2)nr + n 24}
= (U2)[nt + 1) — 24,
Further, if G if G = K, w2, . . m then, it is not diflicult to see that W(G) = (L/2)[n(r + 1) — 2¢].
On the other hand, if W(G) = (1/2)[n(r + 1) —21] and x(G) = ¢, then the vertex set {G) can be
partitioned into the color classes Cy, Cy, ... , C such that \C,-l =pn,fori=14, 2, ..., Now,
we claim that any two vertices » and v belonging to two different color classes are adjacent.
For,ifu € Cyand v € G, for i # j are not adjacent,
then 2. dl(u, v) > n— m, which in turn implies that
ve V-
du|G) > n + n - 2 and thereby it will lead to HAG) > (1/2)(mr + 1) — 21], a
contradiction. Again, if both # and v belongs to the same color class then d{u, v) = 2,

otherwise, it leads to the same contradiction. Hence G = K1 .0, ., n holds.
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