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For any A, ™, (T) = ¥ [n(e) -1!2(6)]“‘._ is the modified Wiener number of tree 7. A
e

question was asked in Ref. [6] whether cach pair of indices "W, and ™V, differs in the
sense that there are two trees 7} and 73 ordered differently by ™1, and ™7,,. In this
paper we complete the answer to this question in positive.
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1 Introduction

The molecular-graph based quantity ™| introduced {8] by Harold Wiener in 1947, nowa-
days known under the name Wiener number or Wiener indez, is one of the most studied
molecular-structure—descriptors [4].

Already in Wiener's seminal paper [8] the following formula for the caleulation of the
Wicner number of acyclie (molecular) graphs was reported:

W(T) =3 m(e) - nafe) (M

where T denotes a tree (= connected and acyclic graph), n, (e} and n(e) are the number
of vertices of T" lying on the two sides of the edge e, and where the summation goes over
all edges of T".

A large number of modifications and extensions of the Wiener number was considered
in the chemical literature; an extensive bibliography on this matter can be found in
the reviews [1]. One of such nodification, generalizing the idea of Nikoli¢, Trinajsti¢ and
Randi¢ [3], was put forward by Gutman, Vukicevié and Zerovnik [2]. The modified Wiener
indices of a tree T are defined by

"WAT) = 3 [le)  mafe)] (2)

Clearly, for A = +1 and A = —1, the modified Wiener number "W, reduces to the
ordinary Wiener number W and the Nikolié¢-Trinajsti¢-Randi¢ index ™W | respectively.
Properties of ™W ) and some related indices were studied in [2, 5, 6, 7]. In particular, it
has been shown in [2] that if trees are ordered with regard to "W ,, and "W, for distinct
A, Az < 0, then the two orderings are different. Analogous result was proved by Vukicevié
for Ay, A2 > 0 (7).

In the proof of [2], the graphs used are not necessarily of the same order, i.e. may have
different numbers of vertices. In this paper we will show

Theorem 1. For arbitrary different A\, hy € R there are graphs G| end G of the same
order such that

T (Gh) = " (Gy) <0 (3)
and

ML (G = MW, (Gy) > 0. (4)

This theorem summarizes Theorem 2 and Theoremn 3 of this paper and the result of
Vukicevié in [7).

The rest of paper is organized as follows. [n the next section we give some definitions and
claims which are used in Section 3, where the two theorems are proved. In Section 4, we
give some examples illustrating Theorem 2.
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2 Preliminaries
For arbitrary A € R we define a function:
Fala,b,¢) = (a+b+c)(a+204-3c) + (b+c) 24 (a+ 20+ 3¢~ 1)+ 3 a+ 204 3c - 2)*.
For a later reference note that for m > 4 and A € R we have:
2 m -1 -3 m-2*>0 (5)
(because m >4 = 3m — 6 > 2m - 2 = (2 - 2)* > (3m — 6)*) and
m —2Mm - 1)* > 0 (6)

(sincem >2=92m—2>m=m"> (2m - 2)").

Lemma 1. For arbitrary m € N greater then | and arbitrary X € R™ there ezists an

e=¢(A) €[5, % such that

K0, 5.0) = LG +36,0, 7 - e) =0. (™

Proof. First note that

m m m m
10, ’510)*,&(?1“35.0,? —-g) = 5

-m“‘-l-%-?"(m—])" -

- (FH2)m (T 2m-1 4 (F-e) P(m-2P) =

m
1
= —(2m* —2(m~1)* = P(m - + % @ m -1 - P(m -2, (8)

If e =0, then from (3) follows

m m n m
70500~ Al +36.0,7 ) = T (Pm = 1)* =3 (m -2 > 0.
Ife = %, then from (6) follows
AL VR Lo R g || e LT3y R0 (RN L O S
1:(0, 2,0) f,\(4+3;,0= y <) 7™ + 5 2Y{m—-1)* = 3 (m*-2(m-1)") < 0.

The expression on the lefthand side of (7) is a continuous function of £, therefore there

exists € = £(A) € (0, %), such that (7) holds. O

_ e 2 _ 3
Lemma 2. For any A € R - {0}, Jim EralabT I T



112

Proof. From Lemma 1, inserting £(\) into (7) using (8) we have

m(2V(m — 1)* — 3m - 2)*)
4(2m* — 2 (m — 1)* — A (m —2))°

e(A) = (9)

therefore

£(A) , Mm — A - 3¥Nm - 2)*
lim — = lim ==
m moe 4(2mt - 2¢m - 1) - 3A(m — 2)A)
1 - LA 31— L) 2* - 3

= T - P - 3 - Ipy T iz -2 -3y

Lemma 3. Let Ay, Aa < 0. Ay # Ay tmplies £(A)} # (A2} .

Proof. Hint: for A < 0, £(}) is an increasing function, because its derivative is positive.
]

3 Theorems

Let G(a,b,c) be a tree, depicted on Fig. 1.

Figure 1: The graph G{a, b,¢c).
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Lemima 4. For arbilrary A € R and a,b,¢ € Ny, "W (G, b,¢)) = fala,b,c).

Proof. Clear. 0O

Theorem 2. For arbitrary different Ay, Ay € R™ there are graphs Gy and G, of the same
order such that

MY (G) ~ "W, (Gy) <0 and ™5, (G)) — "W, (Ga) > 0.

Proof. Let e(A;) be such that fy,(0,%,0) — fa, (§ + 3e(A1),0, % — (A1) = 0 and £(Xy)
such that f,(0,2,0) = f1, (% +36(A2),0, % — e(Xg)) = 0. From A; # Ag it follows that
(A1) # £(Ag) . Without loss of generality we can assume that £(A,) < £(A2) . Because of
(5) and (6) we have, for each j € {1,2}:

(i) il e < £(Xy), then f, (0, %,0) - f1,(F +36,0,F ~¢) > 0 and

(iiy if € > £(A;), then f5,(0,%,0) = fi,(F + 36,0, —€) <0.

Therefore, for each € € (g(\1),e(M2))

B0, 5,0) = B lE 4350, 5 ~€) < 0 (10)

2 4 4

and m m m
fAz(Gxino)_fA:(T+3510|Z'_E)>0- (11)

Take a rational number (a fraction)

,‘:fe(“m ) m)

q m—eo m-—+oo

and define sequences my; = dig and &; = 4ip. For large enough 4, r = £ € (eds ,ﬁ,i,f—_”l).
where £,(A) 1s the value of £, corresponding to m; and A (see Lemma 1). Consequently,
for the graphs G, = G(0.%,0) = G(0,2:¢,0) and G2 = G(% + 36,0, %5 - &) = G(ig +

12,0, 1 — 4ip). we have "‘_H"‘,\I(G,) —"1 5, (G2) < 0 and "Wy, (G)) ", (Gy) = 0. O

Theorem 3. For arbitrary A\, € R™ and A» € RY there are graphs G, and G, such that
(3) end (4) hold.

Proof. Let m > 2, ¢, = G(0.%,0) and Ga = G(m,0,0).

As

(1) "IV A (G1) =" 5 (Ga) = B+ 328 (m— )M —memM = 220 (m-1)M - B =
22N (m - 1) — mM) < 0 (since mM - 2% (i — 1)* > 0) and

(i) V5, (GL) = "IV, (Ga) = B(2%(m — 1)* —m*2) > 0 (since 2% (m — 1)* —m* > 0),
(3) and (4) hold as claimed. O
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n m
2
Figure 2: The graphs G(0,%,0) and G(m, 0,0).
4  Examples
Application of Theorem 2 is illustrated by the following examnples.
Example 1. Let be Ay = —6 and Ay = —5. We search for such graphs 7| and G, that
"MV 6(G1) =MW _6(G2) < 0 and MW (G} — "W _s(Ga) > 0.
-6

Because lim & ~ 0°001797 and lim 2 ~ 0°003453, we define the fraction
Mmoo m—oe

& = 0002 = 5. Therefore, we try with yny = 4¢ = 2000 and &, = 4p = 4. So
Gy = G(0,2¢,0) = G(0,1000,0) and G, = G(g + 12p,0,q — 4p) = ({512, 0,496).

496

1000

Figure 3: The graphs G(0, 1000, 0) and (512,0.496) .

Let us check:

" _6(G) = 1000 - 20007° + 1000 - 276 - 1699°° ~ 175870 - 1077 and ™V ,(G2) = 1008 -
20007°+1496-279-1999¢+496-37%-1998 "6 22 158821077 . Thus "I¥" _4(G,) < ™W _4(G2).
"M _5(Gy) = 1000 - 20007% + 1000 - 275 - 1999-% = 372229 - 10~ and "W ,(G;) = 1008 -

20007>4-496-275-19997°4-496-375-1998 % = 3°2050-10~" . Thus "W _5(G)) > ™V _5(G2) .
O

_"“l
Example 2. Let be Ay = =51 and X; = —5. Because |ill;lu &(=51) ~ 07003237 and
m— m
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o =5
'.!111&1—(—‘32 0°003453 , we (ake L’ = 00033 = l"d!u%ﬁ Therefore, G, = G(0,2¢,0) =

G(0,20000,0) and Gy = Gg 4 12p, l] g —Ap) = G(10396, 0, 98G8) .
Indeed, ™ g1 (G1) < "W _5(Gs) and ™' _4(G\) > "W _s(Ga) . O

-501
Example 3. Let be A, = -501 and Ay = —5. Because "I.i—l'goa(%()_) = 0°003431
= =
and im&)g( %) 2 0°003453. we define the fraction E = 000344 = A2 Thercfore,

50000
G, = G(0, ‘Pq. U) = G(0, 100000, 0) and Gy = G(g -+ l‘lp 0,q — 4p) = G(52064,0,49312).
Again, "W _q01(Gy) < "W .50 (G2) and "W _5(Gy) > "W _5(G,). O

Example 4. Let be Ay = =5 4 and Ay = —5. We search for such graphs G, and G that
"’Hi_, 4(G ) i 1(C ] < 0 and mﬁ/_s(Gﬂ - "y _5(62) > 0.

Because ilm ig_p_ﬂ =2 ()'00266398 and hm £ 22 07003453, we define the [raction
m

f; =0 002664 = ”“0‘00 Therefore, we try \uth my = 4q = 500000 and €, = 4p = 1332. So
Gy = G(0,2q,0) = G(0,250000.0) and G, = G(g+12p,0,9 —4p) = G(128996, 0, 123668) .
However,

g (G)) = 4730197235-107%¢ and "W 5 4(G3) = 4730197221-107°, thus ™W _5-4(G)
"W _s 4(Ga) s

e MW _5(G)) = 82500-107% and "W _5(G,) & 8'2252-107%, thus "W _5(G)) > "W _5(G?).
So the graphs G, and G, are not ordered differently by ™W,, and ™W,,.

Therefore, we try with m; = 8¢ = 1000000 and &, = 8p = 2664. So G} = G(0,4¢,0) =
G(0,500000,0) and G = G(2¢ + 24p, 0, 29 — 8p) = G(257992, 0, 247336) .

Now:

oMW _54(G}) 2 2°03767811-107%" and ™ _s-4(Gh) = 2'03767814-107%", thus ™W _54(G)
W _s4(G3);

o "IV _5(GY) & 571563-107% and "W _5(G%) &= 51408-107%, thus ™W _5(G}) > ™W _s(G}) .
So we have found the graphs necded. 0O

In general, it may be necessary to try more elements of the sequence before hitting the
first my, £; for which the corresponding graphs would be ordered differently.
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