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Abstract. Two quantities are defined, called spanning-tree density and reciprocal
spanning-tree densiry, and they are then used to discuss the structural intricacy of a
number of graphs of chemical interest.

INTRODUCTION

In this work, we introduce and evaluate a concept that leads to the definition of
two new indices that we shall call ‘spanning-tree density’ and ‘reciprocal spanning-tree
density’, in an attempt to quantify how structurally ‘complicated’ a polycyclic molecular-
graph actually is — a hitherto somewhat qualitative attribute that we shall henceforth
refer to as the intricacy of such a graph. This latter has been dubbed by several authors
[1-6] (including one of us [3]) the complexity of the molecular graph in question. This
term is, however, liable to give rise to misunderstandings, for mathematicians (e.g., refs.
7-11, and pp. 38, 50 and 225 of ref. 12) and chaos-theonists (e.g., ref. 13) reserve the
word ‘complexity’ simply to denote the number of spanning trees in a graph; the two of
us have (independently) used ‘complexity’ with this connotation on several occasions

[14-23] as a well-defined, strictly quantitative, numerical property of a molecular graph.

*Dedicated to Professor Horst Sachs on the occasion of his 75™ birthday.
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‘Complexity” as more generally used by chemical graph-theorists, on the other hand, is a
somewhat vague and avowedly qualitative term that does, however, frequently run
parallel with other intuitive, semi-quantitative chemical-terms (such as aromaticity,
branching, cyclicity efc.) that are in daily use by chemists. Nevertheless, many attempts
to define and measure ‘complexity’ have been published, and a book on this subject is
soon to appear [24].

The first authors who suggested simply using the number of spanning trees (what
they referred to as maximal trees) as a measure of what we are here calling the intricacy
of a graph were Bonchev er al. [25,26], some twenty years ago. Their criterion was
straightforward: the greater the number of spanning trees, the more ‘complex’ the
structure. Recall that a spanning tree of a graph G is a connected, acyclic sub-graph that
comprises all the vertices of G (see p. 46 of ref. 27 and pp. 12 and 63 of ref. 28). Since
the spanning tree of a graph that contains no cycles is, identically, just the graph itself, it
is obviously feasible to use the number of spanning trees as a measure of graph intricacy
in the case of (poly)eyclic structures only; the same is true for our two new indices,

spanning-tree density and reciprocal spanning-tree density, both defined in the next

section.
SPANNING-TREE DENSITY AND RECIPROCAL SPANNING-TREE DENSITY

In a simple graph, G (i.e., one without multiple edges), with v vertices and ¢
edges, any spanning tree must contain precisely (v-1) edges. The number of ways of
choosing any (v-1) edges from the e available edges is EC(V_I). Now, of course, not every
such set of (v—1) edges so selected will constitute a spanning tree of G when the
remaining edges in G are deleted. If #(G) represents the number of spanning trees of G,
then we define the Spanning-Tree Density of G (denoted by the symbol STD(G)) as the

ratio

G/ (Cpyy)-
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It may be thought of as representing the probability that if any set of (v—1) edges in G is
selected, and the other (¢-v+1) edges in G are deleted, the resulting entity is a spanning
tree. In order to be able to deal with numbers that are greater than 1, it is convenient to
define the Reciprocal Spanning-Tree Density of G, RSTD((7), as the ratio
(ec(v_l))/(’(G))-

In general, it is self-evident that

STD(G) £ 1,
and

RSTD(G) = 1.
(It is also clear that the only graphs that are not trees for which STD(G) = RSTD(G) [= 1]
are the circuit-graphs, C,, — see, for example, ref. 29).

We propose that the Reciprocal Spanning-Tree Density of a graph G (RSTD(G))
be defined as a quantitative measure of the /ntricacy of G — the bigger RSTD(G) is, the
more intricate G is. We now investigate this claim by applying these ideas to some well-
known and important chemical-graphs. For all the graphs considered we use graph-
theoretical notation [30], even though many of these graphs can be used — and, indeed,

are used — to model chemical structures [28, 31, 32].

NUMERICAL CALCULATION OF RECIPROCAL SPANNING-TREE DENSITY
FOR SEVERAL CLASSES OF GRAPHS

The Complete Graphs K,
The Complete Graph K, has every pair of its n vertices joined by a single edge.
Kp thus has (1/2)n(n-1) edges in total, and each individual vertex has precisely (n-1)

edges incident upon it. K, is thus a regular graph (because every vertex has the same

number of edges incident upon it) of degree (n—1) (because that is the common number of

edges incident upon each vertex). The number of spanning trees, #(K,), in K, is given by

the Sylvester-Borchardt-Cayley formula [33-35]:
(K,)=n"?
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Thus:
RSTD(K,) = (2= 72

Application of this formula to Ky is shown in Figure 1. K5 is a complete, non-
planar graph of genus [36,37] | and degree 4. The generalised Euler Theorem for a
connected graph is: v—e + f =2 - 2g, where g stands for the genus [36,37] of G and f'is

the number of faces [38] of G. With g=1, this leadstov~¢ + /= 0.

Because the singular relevance of Ky was first emphasised by Kuratowski in the

course of his classic work [39] on characterising non-planar graphs, it is often known as

the Kuratowski Graph.

t(Ky) = 5>2 =125

10C, =210
RSTD(K,) = 1.68

Ks

FIGURE 1. Calculation of RSTD(Kj).

It should be noted that RSTD(K,) increases with n; for example, RSTD(K,) =
1.25 (to three significant figures) whilst RSTD(Kg) — Kg being [36] of genus 2 — is,
to the same accuracy, 4.52. Thus, the intricacy of the complete graphs, K, — at least, as

measured by the new index RSTD(X,) — does appear to increase with size.

The Complete Bipartite Graphs K

The Complete Bipartite Graph K, , is a graph with (m+n) vertices that are

n

partitioned into two sets in the following way: none of the m vertices in one set is joined
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by an edge to another in the same set, and none of the » vertices in the other set is joined
by an edge to a vertex in its own set; however, each of the m vertices in the one set is
joined by a single edge to every one of the n vertices in the other set Sometimes, these
two vertex sets are thought of as being coloured; thus, if the first set of m vertices were
coloured red, and the n vertices in the other set were coloured blue, no red vertex would
be joined to another red vertex, and no two blue vertices would be connected by an edge;
however, each and every pair of red and blue vertices would be joined by exactly one
edge. X, , thus has (m +n) vertices and mn edges. The number of spanning trees in K,,, ,
is given by the formula [40,41]:

I(Km ") =mn—l x nm—l

RSTD(K,, ) = ™ Cppspy | (m" " x n™ 1)

This formula is applied to K3'3, (the “Utilities Graph’ — sce, for example, ref. 42
and p. 142 of ref. 43), in Figure 2. K 3 is a non-planar graph of genus 1 [44,45] and
degree 3 for which (as with K, above) Euler’s Theorem requires that v — e + /= 0.
Kuratowski [39] likewise drew attention to the central importance of X 5 in the context
of his pioneering algorithmic approaches to the question of distinguishing between planar

and non-planar graphs.

Red Red
Red . (K, ) =3 x 3% =81
°C,=126
RSTD(K, ;) = 1.56
Blue Blue Blue
KJ,J

FIGURE 2. Calculation of RSTD(Kj 3).
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The Petersen Graph

The Petersen Graph (Figure 3) is a regular graph of degree 3 that was introduced
(46] into Mathematics as a counter-example to a conjecture that Tait made [47] in
connection with the TFour-Colour Problem [48]. It has had a relevance elsewhere in
Mathematics [49] and it also appears to be one of thc more important graphs in
Chemistry, in which context it depicts possible routes for the isomerisation of trigonal-

bipyramidal complexes [50,51].

FIGURE 3. The Petersen Graph.

The number of spanning trees in the Petersen Graph is precisely [52,53,40] 2000.
(This has been independently verified by at least three unconnected calculations
52,53,40]; the value given on p. 892 of ref. 22 is thus conceded to be in error; all other
numerical data from this source that are needed for the present work have been

independently checked by us). Also, for the Petersen Graph, v=10, e=15. Thus:
RSTD(Petersen Graph) = 'SCg/ 2000 = 2.50 (to three significant figures).

The Blanua Graph
The Blanusa Graph (see Figure 4) was also introduced in the context of the Four-
Colour Problem [54]. Like the Petersen Graph, it is regular of degree 3 and it can in fact

be obtained by suitably combining two copies of the Petersen Graph [22].
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FIGURE 4. The Blanusa Graph.

It is known [22,55] that f(Blanusa Graph) = 1037136; also, for this graph, e=26
and v=18, and so RSTD(Blanu$a Graph) = 26Cl-‘,l 1037136 = 3.01 (to three significant
figures). It can be seen merely by inspection that the Blanusa Graph is intuitively a more
‘complicated’ structure than the Petersen Graph, and this impression is confirmed both by
the respective number of spanning trees and the reciprocal spanning-tree densities of

these two graphs.

The Desargues-Levy Graph
Like the Petersen and Blanu3a Graphs, the Desargues-Levy Graph (Figure 5) is a
three-connected, regular graph that has also found chemical application, this time

describing isomerisations and rearrangements [51,56-59].

FIGURE 5. The Desargues-Levy Graph.
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From the previous work of one of us [22], ((Desargues-Levy Graph) = 6144000
and, for this graph, e=30 and v=20. Thus: RSTD(Desargues-Levy Graph) = mC‘9 /
6144000 = 8.89 (to three significant figures). By this criterion, it thus appears that the
Desargues-Levy Graph is more ‘complicated’ than the Blanusa Graph. This deduction is
qualitatively consistent with the respective spanning-tree counts for the two graphs and

the impression intuitively gleaned by a visual inspection of their structures.

Platonic Solids

The Platonic solids (tetrahedron (T), cube (C), octahedron (0O), icosahedron (1),
and dodecahedron (D)) are depicted, in ‘three-dimensional’ form, in Figure 6, and their
corresponding Schlegel diagrams are shown in Figure 7. We include the Platonic solids in
this paper because they are continuously attracting the attention of chemists [60-67], with

cubane and dodecahedrane providing experimental realisations, while tetrahedrane
remains an interesting possibility — the C, fullerene would be dodecahedral, and the

icosahedron is realised by B, H,,%".

tetrahedron cube octahedron

icosahedron dodecahedron

FIGURE 6. The Platonic solids.
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A A

A®

FIGURE 7. Schlegel Graphs for the Platonic solids,

The numbers of spanning trees of the Platonic solids are [12,19]: (T) = #(K,) =
16; 1(C) = 384; 1(O) = 384, #(I) = 5184000 and 1(D) = 5184000. Furthermore, C3 =20
(for T); 2C, = 792 (for C); 12C5 = 792 (for O); *°C, , = 54627300 (for I); and 3°C,y=
54627300 (for D). The RSTD-values (to three significant figures) for the Platonic
solids are thus: RSTD(T) = 1.25; RSTD(C) = RSTD(0) = 2.06; RSTD(I) = RSTD(D)
= 10.54. Tt is not surprising that 1(G), °C,,_; and the RSTD-values in the cube and the
octahedron on the one hand, and in the icosahedron and dodecahedron on the other,
are identical, within each pair. The graphs that comprise each of these two pairs are
duals of each other. The RSTD-index thus orders the Platonic solids in the following
way: T<C=0<I=D

The same order is obtained, for example, by the sum of vertex-degrees (or,
equivalently, twice the number, e, of edges); the sums of the vertex-degrees are given in
brackets: T(12) < C(24) = O(24)< I{60) = D(60). Certain other quantities, such as, for
example, the cyclomatic number [68] and the Bertz complexity-index [2], order the

Platonic solids differently: T<C <O <D <L
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Cgo and C4; Fullerenes

Buckminsterfullerene, Cgg, (see Figure B) is selected because of the current

interest in the properties of fullerenes and other nano-materials made of carbon atoms

(691,

FIGURE 8. Buckminsterfullerene and its Schlegel graph.

There are 1812 Cg4 isomers [70-74]; Buckminsterfullerene is predicted to be the

most stable isomer [72,73] and, furthermore, of all these isomers, Buckminsterfullerene

is the most nearly spherical. That is to say, the truncated-icosahedral structure is the most

uniformly ‘curved” of all the Cg fullerenes, and, indeed, of all the fullerenes, C,, for a
suitable range of n near 60 [75]. There are 8149 C,, isomers [70-74]. The stable C;,
isomer and its Schlegel graph are depicted in Figure 9, and the results for both Cg and

C,q are presented in Table I; (all numbers quoted are corrected to three significant

figures; the sources of the spanning-tree data are refs. 15, 18 and 20).

TABLE 1. Numbers of spanning trees (1(G)), values of er—l’ and reciprocal spanning-
tree densities (RSTD(G)) of the Cyy and Cyy fullerenes shown in Figures 8 and 9.

Fullerene t{Fullerene) G RSTD(Fullerene)
Coo 3.75x 10%° s MR I (0% 3500

Cro L1ax10% 1% ~1.70x10% 15000
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The RSTD-values indicate that C,4 is a more complicated structure than Cy.
This is also supported, for example, by the fact that the cyclomatic number [68] of Cqq

(1=36) is bigger than that for Cyy (u=31).

FIGURE 9. C,q and its Schlegel graph.

All Connected Cyclic Graphs with Five Vertices
We include this set of cyclic graphs because they have already been studied, by
Randic [76] and others [77]; all connected cyclic-graphs with five vertices are illustrated

in Figure 10.

O WY
ERAR

E

FIGURE 10. All connected cyclic-graphs with five vertices.
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In Table 2 we give the numbers of spanning trees, #(G), the values of c’Clq, and

the reciprocal spanning-tree densities, RSTD(G), of the cyclic graphs with five vertices,

shown in Figure 10 and labelled there as A to H.

TABLE 2. Numbers of spanning trees (¢(()), values of eC‘kl, and reciprocal spanning-

tree densities (RSTD(G); to 3 significant figures) of all connected cyclic-graphs with five
vertices; the graphs in question are labelled A to H and are depicted in Figure 10

Graph, G HG) Co1 RSTD(G)

A 5 5 1

B 11 15 1.36

C 21 35 1.67

D 24 35 1.46

E 40 70 1.75

F 45 70 1.56

G 75 126 1.68

H 125 210 1.68 -

The «(G), °C,,_;, and RSTD(G) indices ordered the five-vertex cyclic-graphs as

follows:
HG): A<B<C<D<E<F<G<H
Coi A<B<C=D<E=F<G<H

RSTD(G): A<B<D<F<C<G=H<E

It will be observed that each of these quantities has produced a different order.
That given by RSTD(G) is somewhat implausible; the order obtained via #(G) is
intuitively acceptable, as is that given by °C,_ .

In Table 3 we offer a number of other indices, taken from ref. 77, for the graphs
of Figure 10. The indices considered are the Wiener index (W) [78), the Balaban indices

(!, Jo) [77,79], the Wiener-sum index (WS) (76,77,80] and the two Kirchhoff indices

(Kf, KfS) [77,81].
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TABLE 3. The Wiener indices (W), Balaban indices (J, Jg), Kirchhoff indices (Kf),

Wiener-sums (WS) and Kirchhoff-sums (KfS) for the eight five-vertex cyclic-graphs of
Figure 10. (All non-integral data are presented corrected to three places of decimals.)

Graph, G -W ] Io -Kf WS -KfS
A -15 2.083 3.125 -10.000 14583  -7.000
B -14  2.194 3.789 -8.812 16.886  —6.091
(62 -13  2.486 4.664 -6.952 18.583  -5.476
D ~13 2389 4866 -6417 19956 -5.208
E -12  2.804 5849 5750 20.826 -4.875
F -12 2711 6.067 -5.333 22.071  -4.667
G -11  3.138 7351 —4.667 23357 4333
H -10 3,571 8929  —4.000 25000 -4.000

The above Table gives rise to the following orderings for the intricacies of the
eight five-vertex cyclic-graphs, A to H, shown in Figure 10:
-W tA<B<C=D<E=F<G<H
J :A<B<D<C<F<E<G<H
IQ&WS :A<B<C<D<E<F<G<H

Kf&-KfS: A<B<C<D<E<F<G<H

Amongst these indices, J, WS, -Kf and ~-KfS gave rise to the same ordering
of these eight five-vertex cyclic-graphs, as did «(G). This result also agrees with
Randi¢’s ordering for the same octet of five-vertex cyclic-graphs [76]. His order was
based on the Wiener-sum indices derived from the quotient matrix, denoted “D/A”, in
which the elements of D, the distance matrix, are divided by the corresponding off-
diagonal elements of A, the detour matrix [82,83]. The negative of the Wiener index

supports the order given by °C,, . The same ordering is also obtained by the vertex-

degree sums (or, equivalently, as has already been observed, twice the number of



110

edges, e (given in brackets)): A(10) < B(12) < C(14) = D(14) < E(16) = F(16) <
G(18) < H(20). If, however, we consider only the sums of the vertex-degrees higher
than 2, the following order emerges: A(0) < B(6) < C(10) < D(12) < E(14) < F(16) <
G(18) < H(20), which fully agrees with the orderings obtained by means of #(G), Jo

WS, —Kf, and —-KfS.
CONCLUDING REMARKS

As is illustrated in the above applications of several ‘intricacy indices’ to the five-
vertex c}clic—graphs A to H of Figure 10, by no means all of the indices proposed for
assessing the intricacy of a graph necessarily agree among themselves when they are
applied to a specific collection of graphs whose ‘intricacy’ it is desired to quantify — or,
at the very least, to order. This, though, need not, we feel, give cause for undue concern;
the intricacy of a graph is, after all, a somewhat fuzzy concept [84-87] and how it is
defined will naturally determine the grder of such intricacy decided upon within any
given set of (molecular) graphs. Bonchev and Seitz, on p. 354 of ref. 87, stated the
opinion that “..there are different kinds of complexity and no single concept could
embrace all the aspects...” of it. Nevertheless, the reciprocal spanning-tree density is, we
submit, a physicaily and intuitively sensible approach to this problem, representing, as it
does, the reciprocal of the probability that if any set of (v-1) edges is selected in a graph
that comprises v vertices, and the other (e—v+1) edges are deleted, the resulting entity is a
spanning tree.

In our initial evaluation of this newly proposed ‘reciprocal spanning-tree density’,
RSTD(G), as an index for quantifying the intricacy of a cyclic graph G, our emphasis
after introducing it has been almost entirely on numerical computations and applications
of it. In conclusion, though, we just mention in passing that, for certain categories of
graphs (such as, for example, the Complete Graphs Ky, and the Complete Bipartite Graphs

Km n, encountered above), it is possible to derive general formulae for RSTD(G). Thus

— as already pointed out — it is, for instance, easy to show that



111

RSTD(K,) = (2D, 11/ a2y

and that
RSTD(Km ) = (™ Crrtn-1} £ {m"™ ) x ™1y,

It is clear that analogous formulae could always be derived for any class of graphs
whose spanning-tree counts can be obtained in closed form. One advantage of casting the
results like this would be that there is then the possibility of seeing how the RSTD(G)
index within a given class of graphs behaves as the graphs get bigger — and, in the
limit, when n, m,...etc. — e<. The index RSTD(G) is thus here offered for possible further

evaluation, investigauon and assessment — both numerical and algebraical.
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