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Abstract

Within a set of isomers, the number of spanning trees of a fullerene graph (the
complezily) correlates negatively with the number of pentagon adjacencies, and hence
correlates positively with relative stability. The most stable isomers of Cqg, Cgo and
Cro each have the greatest complexity within their respective sets of 40, 1812 and 8149
candidates. A similar sorting pattern, but with less marked separation of isomers, is
evident for Randié’s modified definition of complexity, which is based on augmented
vertex degree.

1. Introduction

Every connected graph G has al least one spanning tree, i.e. a subgraph that
connects all the vertices of G but has no cycles. Spanning trees of weighted and
unweighted graphs have applications in operational research, in design of communi-
cations and distribution networks (1], and in classical physics in the computation of

currents in complex electrical circuits [2]. They appear in chemistry as intermediaries

'Dedicated to Professor Horst Sachs on the occasion of his 75th birthday.
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in McWeeny's formulation of the Hiickel-London model for ring currents in 7 systems
(3], Well known algorithms exist for finding a spanning trec, or one with specified
minimal properties, and also for counting the total number of spanning trees asso-
ciated with a given graph,a quantity known as the complerity of the graph, C(G)
[4-7]). Several authors have dealt with this graph-invariant property in the specific
case of fullerene graphs, t.e. those cubic polyhedral graphs on n vertices comprising
12 pentagonal and (n/2 — 10) hexagonal faces [8]. Analytical evaluations of com-
plexity have been carried out for highly symmetric cases Cgo [9] and Cy40 [10], and
computed values have been published for several fullerenes in the range Cyg to Cgg
[11]. The values are unwieldy integers, with the ~ n/3 digits expected from the de-
gree of these cubic graphs, which have high discriminating power, and are capable
of uniquely labelling all 1812 isomers of Cgg, for example [12]. The target of the
current investigation is a different one: to check for the existence of a link between

the mathematical complexity of a fullerene and its physical energetics.

2. Method

The Matrix-Tree theorem, implicit in the work of Kirchhoff in 1847 [2], gives
the number of spanning trees C(G) as the value of (every) cofactor of the Laplacian

matrix of the graph, L(G). The Laplacian is
L(G) = D(G) - A(G) (1)

where A is the conventional adjacency matrix with A,, = 1 if ¢ and j are vertices
Jomed by an edge, A;; = 0 otherwise, and D is the (diagonal) matrix of vertex degrees,
with D;; =0ifi £ 3, D;; = 2, Aij = d;, the degree or valency of the ith vertex
(=3 for fullerenes). The characteristic polynomial of L(G) is a generating function
for the numbers of spanning trees of subgraphs of G , and expressions for the first few
of its coefficients in terms of structural features have been given for fullerenes [11].
For connected graphs, C'(() is readily evaluated from the spectrum of the Laplacian

(13, 7], as
¢ = (o) I (2

1
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where vg; is the number of vertices of (7 and {AF} are the eigenvalues of L(() arranged
in non-decreasing order, and the product omits the zevo cigenvalue of L((), which by
construction is singular. In a regular graph with all vertices of degree 7 and v = n,

the spectra of L(G) and A(G) are related by

Mozr-af (3)

with,
0=X<cabc.. g <or (4)

and
r=Ms M. 202 - (5)

In a fullerene, C,, which is a regular graph with r = 3, a useful formula for the

complexity is (7, 13]
c@ = (3) I~ (6)

>1

More-efficient algorithms for evaluation of C(G) exist, but the form (6) has the
attractions that it requires only a trivial modification of a standard Hiickel molec-
ular orbital program and that it has good numerical stability properties. In most
previous applications, the emphasis has been on exact evaluation of the very long
integers C(G). To achieve this for large n by taking products of eigenvalues of the
Laplacian, or by any other real-arithmetic formula, requires special, and eventually
prohibitive, attention to precision {6, 7, 11, 9. The number of multiplications for
the fullerene C,, could be reduced further by taking advantage of the fact that the
complexity of a planar graph is equal to that of its dual [14], and hence applying
the Laplacian formula (2) to the spectrum of the (non-regular) deltahedral dual of
the fullerene, a graph with 12 vertices of degree 5 and (n/2 — 10) of degree 6 and
hence ve = (n/2 + 2). Quadruple-precision FORTRAN was used here, although
the highest absolute precision is not in fact necessary, as all the isomers considered
here can be distinguished by comparison within the 8 or 9 most significant digits,
so that double-precision real- number approximations to C(G) are sufficient for the
present purpose.The complexity for all fullerenes of reasonable size is easily deter-
mined to greater precision than any experimental quantity with which it is likely to

be correlated.
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3. Results

Adjacency information for fullerenes is coded by the face spiral (8, 15] construc-
tion. Lists of spirals were used to generate A(G), and hence C(G) for three sets of
candidates: the 40, 1812 and 8149 classical fullerene isomers of Cy4o, Ceo and Cro -

The identity of the isomer of lowest total energy in each set is well known [8].
Within the C4o set, isomer 40 : 38, which has D; symmetry and the topology of
a tennis ball, with a seam of 10 hexagons surrounding two isolated crescents of 6
pentagons each, is consistently predicted by quantum-mechanical methods to have
the lowest total energy. Within the Cgo and Crg sets, the unique isolated-pentagon
isomers (60 : 1812 and 70 : 8149, approximating the football and rugby ball, re-
spectively) have the lowest relative energies. These three most stable isomers are
also those with the unique highest complexity within each set. Significantly, in each
case a low-C(G) extreme is found for energetically poorest isomer, the first in the
spiral order of isomers, the cylinder with 10 pentagon adjacencies in each of its two

hemi-dodecahedral caps. The ranges spanned by the computed values are from the

minima
C(40:1) = 37483980220840 = 2% x 5 x 7512 x 12897 ~ 3.748 x 10'%;
C(60:1) = 270116969877332883360 = 2° x 3% x 5 x 117 x 312 x 470417

~ 2.701 x 10%;

C(70:1) = 725097819324933982208000 = 2" x 5% x 192 x 1012 x 149% x 20817
~ 7.251 x 108,

to the maxima

C(40 : 38)

41404 929874560 = 27 x 3% x 5 x 7 x 43 x 347 x 2549
~ 4.140 x 10'3;

C(60 : 1812)

375291 866 372898816000 = 2%° x 3* x 5% x 11° x 19*
~ 3.753 x 10%;

C(70 : 8149)

1136544737068 261 950000000 = 27 x 3 x 5% x 11% x 13 x 59% x 3719¢
1.137 x 10%.

2
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The values C(60 : 1812) and C(70 : 8149) agree with previously published values
6,7,9,12).

As an index of relalive total (o + 7) energy, the value of Ny, the number of
pentagon-pentagon edges of the fullerene isomer, is a good choice. It is easy to de-
termine, and has been shown to correlate well with quantum mechanically calculated
isomer energies; the penalty of ~ leV per adjacency is the driving force behind the
isolated-pentagon rule for stable fullerenes [16). As Figure 1 shows, N, also gives
a good prediction of the different values of fullerene-graph complexities: all three
fullerene isomer sets, totalling 10,001 molecular graphs, give scatterplots of C(G) vs.
Np(G), each with a well defined envelope pointing to a maximum C(G) for minimum
N, .

In view of the equality of complexity between a planar graph and its dual [14],
the plots in Figure 1 can also be re-interpreted simply by re-labelling the axes as
correlations between complexity and the number of adjacent five-valent vertices in
the deltahedral fullerene duals. The chemical systems modelled by fullerene duals are
(hypothetical) closo-boranes B, H2™; those with more than 12 boron vertices remain
only a theoretical possibility [17, 18]. According to Figure 1, the trend of maximum
complexity for minimum adjacency of low-coordinate boron vertices, and hence for
energetic stability, carries over from the fullerenes to the boranes.

It is interesting to compare the performance of the standard definition of com-
plexity with others that have been proposed. In another paper in this special issue,
Mallion and Trinajsti¢ [19] consider refinements of the raw count of spanning trees
as a measure of the complexity or ‘intricacy’ of a graph. Their spanning-tree density
STD(G) measures the probability that a randomly chosen set of vs — 1 edges form
the total of e edges of the graph G will be a spanning tree, i.e.

STD(G) = C(G)(v:'a_ 1) } )
Within isomer sets STD(G) is of course strictly proportional to C((G), and so all the
scalterplots on the left of Figure 1 apply equally well to STD(G).
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Figure 1: Correlation of fullerene complexity and pentagon adjacency. The left-hand
panels show scatterplots of the relative complexity, defined as the ratio of C(G) to the
complexity of the most complex isomer, against N, the number of pentagon fusions.
The right-hand panels show the equivalent plots for the Cg , again normalised to the
most Randi¢-complex isomer. The three rows refer to (a),(b) the 40 fullerene isomers
of Cyo, (€),(d) the 1812 fullerenc isomers of Ceo, (e),(f) the 8149 fullerene isomers

of Czo.
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[n a different approach, Randié¢ suggests that it may be useful to define complexity
through the augmented valences |20, 21]. By taking cach vertex in turn as a starting
point, the valencies of all its neighbouring vertices in successive shells are accumu-
lated, weighted by a decreasing function of their distance from the starting vertex.
Averaging over all possible starting vertices yields

Iy oon
cr(G) = () 23 df2 (8)
where d; is the degree of vertex 7 and d;; is the distance in edges between vertices 1
and j. The subscript R for Randi¢ is used here to distinguish this quantity from the
usual C'.

As Figure 1 shows, Cr and C give broadly the same trends with pentagon ad-
jacency. Maximum Cp is found for an isomer with minimum N, in all three cases
though, for C4o, the Randié complexity favours the less stable [16] of the two isomers
that have N, = 10, with

Cr(40 : 39) = 695.156,  Cr(40 : 38) = 694.969
The isolated-pentagon isomers have
Cr(60 : 1812) = 1110.586,  Cg(70 : 8149) = 1317.656.

Minimum values of Cr are again found for the isomer of each set that has the most

pentagon adjacencies:
Cr(40: 1) = 691.055, Cr(60 : 1) = 1093.257, Cr(70 : 1) = 1294.823.

Cr(G) yields a narrower range of relative values than does C(G) for the fullerene
sets examined, and it seems that C(G) is superior from the point of view of isomer

discrimination.

4. Discussion

It is becoming clear that a variety of invariants show a pattern of correlation
with the computed total quantum-mechanical energies of fullerenes, reinforcing the

chemical intuition that the energy of a carbon cage has a significant strain/curvature
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component from the adaptation of the carbon atoms to the non-ideal bond angles im
posed by the wrapping of the graphite sheet onto the sphere. Wiener index, Balaban
index (22], resistance distance (23], smallest eigenvalue [24], and now complexity all
show a qualitative tendency to distinguish isomers of very high and very low cnergies,
which may be a pointer to underlying family relationships between the mathematical
invariants themselves. From a practical point of view, these invariants will not re-
place the much simpler count of pentagon adjacencies, which gives a first qualitative
picture of the total energy, but they may yet be useful in constructing combinations

to to pick out especially stable candidates from within the isolated-pentagon set.
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