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Abstract
Let W} be the number of walks of length k in a graph G, and put Ag :=
Wiy Wiy —sz . In recent work, it was shown that exactly one of the following
four alternatives holds:

e A > 0and Ay =0 for all kK = 2,3,... in which case G is said to be
harmonic,

o Ag_1 >0and Age =0 forall k= 1,2,... in which case (7 is said to be
almost harmonic,

o Aggy >0forall k=1,2,... and Ag > 0 for all sufficiently large k in
which case G is said to be superharmonic, and

o Agy >0 forall k=1,2,... and Az < 0 for all sufficiently large k in
which case ( is said to be subharmoniec.

We examined all trees (up to isomerphism) with up to 18 vertices and deter-
mined how many of them belong to each of the four classes specified above. In
agreement with a previously established result (cf. S. Griinewald, Harmonic
Trees, Appl. Math. Lett., to appear) according to which a harmonic tree with
at least 3 vertices always has exactly one vertex of degree a? —a+1 all of whose
neighbours have degree a while all other vertices are leaves (for some a € N>2),
exactly three (with 1, 2, and 7 vertices, respectively) of those trees turned out
to be harmonic, no one is almost harmonic, 11 are superharmonic (of which the
smallest has 12 vertices), and all others — some 99.994% of all trees examined
— are subharmonic.
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1 Introduction

1.1 Walks in Graphs

Given a finite simple graph G = (V, E) with vertex set V = V; and edge set
E = Fg C (Z), a walk of length k in G is a (k + 1)-tuple vy, vy, ..., v of ver-
tices of G with {v;_,v;} € E foralli = 1,2,...,k. Such a walk is said to start at
vertex vy and to end at vertex v;.

Walks are not required to consist of mutually distinct vertices, only. In particular, if
Up = Uk, then vo,vi,... ,vg is a self-returning walk (of length k).

The number of walks of length k of G starting at a given vertex v is denoted by di(v)
and the number of all walks in G of length k by Wi = Wi(G). Thus, d;(v) is nothing
but the degree d(v) = dg(v) of v, and one has W, = #V, W, = 2#E, and

den(v) = Y de(w) as well as Wi =S de(v)
wEN(v) veV

for every k € Ny.

Next, let
A= AG = (a'vw)u,wEV

denote the adjacency matrix of G. Then the powers
AF = (QS:E)V.WSV

of A count the number of walks in G. Indeed, the entry %) coincides with the number
Wi (v, w) of walks of length k in the graph G with start vertex v and end vertex w:

(1) '11(,'2 = Wk(vnw) .

1.2 Walks in Molecular Graphs

This elementary result has fascinated theoretical chemists for quite some time. In
early work, the corollary that the trace of A* coincides with the total number of self-
returning walks of length k was applied in the theory of total m-electron energy [1].
Eventually this direction of research was continued in numerous other studies, see [2-
8] and the references cited therein. Another chemical application was put forward in
[9] where atomic environments were characterized by means of the sequences g+ ke
N:={1,2,...}. Also this direction of rescarch was extensively pursued, see [10-14]
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and the references cited therein. Somewhat later, the attention of theoretical chemists
turned to the total number of walks [14, 15]. The main results in this direction were
obtained by Gerta and Christoph Riicker [16-21]. They introduced the concept of
the total walk count defined by

#V-1
twe = tweg = Z Wi
k=0

and demonstrated how this number can be used in QSPR and QSAR studies [16,18-
20].

Clearly, Eq. (1) implies

(2) Wi= 3 Wilvw)= 3 off,
PR v wEV

a formula that can be used for easy computer-aided calculation of Wi. While studying
the mathematical properties of Wy [20] in detail, it was observed that the fine structure
of the k-dependence of W, is, in a concealed manner, determined by the parity of k.
In particular, whereas Wy, — Wy is always greater than W, — W,_, , this is not always
true when, instead of Wy, we consider its logarithm. Indeed, while the signs of the
quantities (log W11 (G) — log Wi(G)) — (log Wi(G) — log Wi, (G)) or, equivalently,
those of the quantities

(3) Ay = AL(G) := Wiesr (G) Wi (G) ~ Wi(G)? (k € N)

appear to exhibit some regularity, these signs cannot easily be predicted in general
from the value of k and just some simple standard properties of and/or basic numerical
quantities attached to a graph G. Yet, spectral graph theory [22] proved to be a useful
tool in the study of Ak, and some important conclusions regarding the sign of Ax(G)
could be obtained by using graph eigenvalues and eigenvectors.

1.3 Walks and the Spectrum of Graphs
Continuing with our notation, let

Uy =Uu(G) = {u e R|Au = puu} (€ R)
denote the space of eigenvectors of A = Ag with eigenvalue y, let

spec(G) = spec(A) := {p € R : dimU, > 0}



66

denote the spectrum of (¢, consider the canonical decomposition

(4) d=s ¥ 9,

nespec(G)
of the all-one vector j in R¥ into its components 5, € U, relative to the canonical
spectral decomposition

RV = 1
uespec(G)

of RY into the direct sum of the mutually orthogonal non-zero eigenspaces U, of 4,
and put

Du = (Ji].u) = (jﬂlju)

for every i € spec(G). The eigenvalues u with D,, # 0 are called the main eigenvalues
of G and the quantities D, are called the (corresponding) main angles of G (cf [23}).

From
Wy = Zagﬂ:jTAkj and j= Z Jus
v, weV pespec(G)
we get
(5) Wi= 3 A= 3 M= 3 Dut
u€spec(G) pEspec(G) pnEspec(G)

This is a well known result from spectral graph theory [22] (for an early chemical
application, see {24]; other chemical applications are reported in {17, 20]).

Combining Eqgs. (3) and (5), one obtains

®) Av= 3 Dy Dy () (u—p)

' €spec(G), py’

Furthermore, the summation on the right-hand side of (6) may be restricted in case
k > 1 to the non-zero main eigenvalues, only.

By means of Eq. (6), it is not difficult to show that [25, 26]

o Ay >0holdsforall k=1,2,...

e one has A, = 0 if and only if G is a regular graph if and only if Ay = 0 holds
forall k =1,2,... .
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1t is less easy to determine the sign of Ay for even values of k. Examples show that
this sign can attain any value, depending on both the structure of the graph G and
the actual value of k.

In [26], the following result, shedding some light on the sign of Ay, was deduced from
Eq. 6:

Theorem 1 Given a finite graph G, ezactly one of the following four alternatives
holds:

(H) A1(G) > 0 and A(G) =0 forall k=2,3,...,
(Hy) Aok 1(G) > 0 for all and Aok (G) > 0 for all sufficiently large k
(H.) Ax_1(G) >0 for all and D2k(G) < 0 for all sufficiently large k,

(Hu) Agk_l(G) >0 and Agk(G) =1 fOT’ all k= 1320 «

Graphs that satisfy (H) are said to be harmonic, and graphs that satisfy (H.),
(H-), or (Hy) are called super-, sub-, and almost harmonic, respectively. Graphs
with Ag(G) > 0 for all k > 0 are called strictly super- and those with Az (G) < 0
for all £ > 0 are said to be strictly subharmonic. We know that non-regular harmonic
graphs exist as well as (strictly and not strictly) superharmonic and (strictly and not
strictly) subharmonic graphs. Yet, we have not yet encountered any finite almost
harmonic graph, and we strongly expect that no such graphs exist at all.

It is obvious from Eq. 6 that whether a graph is harmonic or sub-, super-, or almost
harmonic can be deduced from its main eigenvalues and angles as follows (see also

[26]):

Theorem 2 Let G be a finite graph with ezactly N = Ny distinct main eigenvalues
7 =1n(G) > 12 = 1(G) > --- > v = ™~(G) and corresponding main angles
Dy = Dy,. Then the foliowing holds:

(a) G is regular in case N = 1 (as explained above).
(b) G is harmonic in case N = 2 and 7y = 0.
(c) G is strictly superharmonic in case N > 2 and 7y > 0.

(d) G is superharmonic in case N > 2 and 2 + 7 > 0.
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(e) G is subharmonic in case 1, + Ty < 0.

(f) U N > 2 and 1, + 7y = 0, then G is superharmonic in case Diyy (1 — 72)" >

Diwy (i + 72)?%, and G is subharmonic in case Dy (11 — 72)% < D) (11 + 72)7

IfN =2, ma+7ny =0, and Dygy (11 — 72)* = Diay (11 + 72)?, then an additional
& (2) ()
(somewhat more complicated) examination is needed to determine to which class
the graph G belongs.

Remark 1 If the graph G in the above theorem were almost harmonic, it would have
to satisfy Condition (g), i.e. we would necessarily have N = Ng > 2, »(G)+7n5(G) =
0, and Dz (11(G) —1(G))? = Diwy (11 (G) +72(G))?. Yet, while we encountered finite
graphs G that satisfy Condition (g), none of those were almost harmonic.

Remark 2 Note that the Perron-Frobentus Theorem tmplies that
pie = max(spec(G))

coincides with max(|u| : p € spec(G)) and that D,, > 0 always holds. Hence,
pe = 11(G) = max(|n (G)|, I=(G)), - .., |7~ (G)]) = max(n1(G), |tw(G)]) > O holds for
every graph G with Eg # 0.

Note also that the above considerations combined with the fact that there are exactly
d(v)* walks vg,vy,...,vo in G with vy = vy = -+ - = vy for each vertez v € V implies
— even without the use of the Perron-Frobenius Theorem — that

max(|n(G)], (G, ... Irv (G)]) = max(n(G), lrw(G)]) 2 Vmax(d(v) : v € V)

always holds and that Dyyy > Dy holds in case Ty (G) = —m(G) (while the well-
known result (cf. [22]) that there is some bipartile connected component G' with jg =
g in this case even implies that Dy > Diyy must hold in case 7y (G) = -1 (G) ).

Remark 3 All harmonic trees (including the infinite harmonic trees) were recently
determined in (27] where it was shown in particular that a finite tree T with at least
3 vertices is harmonic if and only if it has ezactly one verter v of degree o® — a + 1
for some integer a = a(T) > 2 while all neighbours of v have degree a and all other
vertices are leaves. Thus, a finite harmonic tree with at least 3 vertices has

a:’—a2+u+1=7,22,53, or ...

vertices. In addition, also all harmonic graphs with a small number of cycles were re-
cently determined (cf. (28]): There are 0,0,4, and 18 connected non-regular unicyclic,
bicyclic, tricyclic, and tetracyclic harmonic graphs, respectively. In contrast, not a
single ezample of an almost harmonic graph has been found so far, and we conjecture
that such graphs do not exist at all.
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Remark 4 [t follows from Theorem 2 (e) that every finite connected bipartite graph
G = (V, B) with bipartition V' = Vi U V3 is subharmonic provided one has 3~ v, ay #
3 vev, 0 for one and, hence, for every positive eigenvector (ay)eev as this implies
T8(G) = =1 (G) and hence 7 (C) + 75 (G) = —(1(G) — 1(G)) < 0.

Thus, unless 3 o @y = 3 ,ey, @y holds in view of the emstence of a “suntching
symmelry” of G, 1.e. an automorphism that interchanges Vi and V, (in which case a
“switching involution”, i.e. a switching symmetry of order 2, must exist'), a “generic*

fintie and connected bipartite graph should be ezpected to be subharmonic.

The least and the most branched n-vertex trees (the path and the star} were shown
in [26] to be strictly subharmonic for all n > 3, and this finding — together with
the fact mentioned above that any finite bipartite graph G has always a good chance
of being subharmonic — pointed towards the possibility that all trees, being surely
bipartite, might be either harmonic or (perhaps even strictly) subharmonic.

In order to collect more empirical data on the behaviour of (the sign of) Ay | we have
studied systematically all 205, 004 trees with up to 18 vertices by means of computer-
aided calculations, and we will discuss some basic computational aspects of this work
in the subsequent sections and the appendix.

Our results can be summarized as follows: Among all those 205, 004 trees with up to
18 vertices, Case (a) (Ng = 1) occurs (obviously) for the two trees with at most two
vertices, only. In accordance with [27], Case (b) occurs only for the unique harmonic
7-vertex tree T with a(T) = 2. Among the remaining 205,001 trees with up to 18
vertices, 204,431 {and, thus, more than 99,7% of those) are subharmonic for “triv-
ial” reasons because their smallest eigenvalue is a main eigenvalue while 486 trees
of the remaining 570 trees with —7,(G) # 75(G) have a switching symmetry. Yet,
only 2 of those 486 are superharmonic (both having 18 vertices), and only 9 of the
remaining 84 trees are superharmonic (i.e. among those 84 non-harmonic trees with
up to 18 vertices that do not have a switching symmetry inspite of the fact that
their smallest eigenvalue is not a main eigenvalue). None of the 2 superharmonic
trees with a switching symmetry and exactly one of the other 9 superharmonic trees
is strictly superharmonic (the tree T; in Figure 2). Thus, altogether only 11 of the

'Indeed, if  is a switching symmetry of order 2%(2b— 1) for some positive integers a, b, the power
¥ == ™7} is a switching symmetry of order 2¢ and must therefore fix some edge {u,v} € E in view
Of #E=#V —1=#Vi+ #Vo - | = #Vi + #V, -1 =1 mod 2 implying that the map ' : V —+ V
that coincides with 1 on all verticrs w that are closer to, say, u than to v and with ¢! on the
remainnig vertices of V' is a switching automorphism of G of order 2.
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205,004 trees with up to 18 vertices are superharmonic of which exactly one is actu-
ally strictly superharmonic. [n particular, even though we now do know that there
are finite superharmonic trees, such trees are evidently quite rare even among those
trees G with —7 (&) # 7v(G), and not even the existence of a switching symmetry
appears to increase the likelihood of being superharmonic.

Moreover, while we never observed a tree (¢ with N = Ng > 2 and 75(G) > 0 {Case
(c) in Theorem 2) or with N = Ng > 2, »(G) + 7w (G} = 0, and

Diay (1 (G) = 7o(G))* = Dy (1 (G) + n(G))’

{Case (g) in Theorem 2), examples for every other of the seven cases considered in
that theorem were encountered.

2 The Naive Direct Approach

Using Egs. (2) and (3), the Wj- and Aj-values, k = 1,2,..., are readily computed
from the adjacency matrix of a given graph. For this, a computer program was em-
ployed written in FORTRAN 77. When we started our research, we hoped that the
asymptotic behaviour of the sequence (Ay)ren as described in Theorem 1 would show
up early enough so that we could infer the sub— or superharmonicity of a small graph
on the basis of the signs of those A,-values that we could still handle by this FOR-
TRAN program®. In other words, we hoped that — at least for any tree with up to
13 vertices -— the sign of Ay would not change any more above those values of k that
could be accessed by computer in the way described above: If Ay, < 0 would kold for
any such “sufficiently large” value of k, the respective graph G could be recognized
as subharmonic while Ay, > 0 would imply that G is superharmonic. This will be
referred to as the “direct approach”.

Yet, the exponential growth of W, causes the foliowing technical limitation: For ev-
ery graph, there is a maximal value of & beyond which an overflow occurs and the
calculation is interrupted. In the present case, the maximal accessible value of & was
usually around 20. For instance, it was between 18 and 30 for trees with 8 vertices

2This hope could have been based in particular on the fact that the actual values of the first 2V
numbers Wo, Wy, ..., Wayn_1 determine the set {ry,72,..., 75} as well as the corresponding angles
D(l),D(;),...,D(N) uniquely and that the number N of main eigenvalues can also be deduced
from the sequence (Wi)k=0,...#v as it coincides with the rank of the associated Hankel matriz
(Wisj)i,j=0....,~, see the appendix for details.
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and between 13 and 27 for trees with up to 18 vertices.

k Wi (T4) A(Ty) We(Ts) Ak (Tp)
1 22 68 22 68
2 46 —48 46 -180
3 94 272 88 628
4 198 -100 182 —2148
5 416 1580 352 7864
6 882 828 724 —28560
7 1872 11268 1408 107000
8 3986 16316 2886 -~ 396324
9 8496 02136 5634 1493220
10 18132 195696 11516 —5571556
11 38720 821960 22550 21003180
12 82730 2062620 45980 —~T78617000
13 176816 7711224 90268 296191056
14 377996 20654288 183656 —1110462392
15 808194 74389572 361358 4180924332
16 1728198 201717192 733766 -15689405140
12 3695734 729472220 1446552 59040379092
18 7903712 1939763080 2932206 —221682608383
19| 16903436 7235260656 5790424 833899065416
20 || 36151796 18410103392 | 11719132 —3132239700624
21| 77319828 72486857776 || 23177200 11779489589416
22 || 165370160 | 172157862776 || 46843238 —44255941970244
23 | 353692742 | 734002490236 || 92765002 166405731184036
24 || 756480430 | 1577920106708 | 187257580 | —625290185902596
25 ~ = 371261902 | 2350868472612716
26 == - 748628004 | —8834589729432696

Table 1. Wy and Ay for two 12-verter chemical trees: the molecular graph T4 of
5,6-dimethyidecane, and the molecular graph Ty of 2,9-dimethyldecane (c¢f. Figure
1). Note that T, appears to be superharmonic whereas Ty appears to be strictly
subharmonic. However, while the latter conclusion can be shown to be indeed correct,
the former is not (see test and Table 2) implying that the naive “direct approach” is
insufficient for gaining reliable insights about the sub- and superharmonicity of trees.

Results of two typical calculations are shown in Table 1. We computed Wy and A,
for all trees up to 20 vertices until overflow occured. In full agreement with Theorem
1, we found that, except for the three harmonic trees with 1,2, and 7 vertices, Ay
1s positive for all of these trees for all odd k € N. However, a detailed examination
revealed that our “direct approach” is not sufficient to establish that a tree is sub—
or superharmonic: The values Ag(T) of the tree T4 continuously increase for even k
from —100 for k := 4 to 1,577,920, 106, 708 for k := 24, suggesting that the tree T4
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should be superharmonic. In this case however, the ratios Ag/Ay_, (k even) should
be approaching their limit from below (which limit then also had to be the square of
the largest number A of the form A = u ' with u, i’ € spec(G) and a, # a.., where
ay is defined by ay 1= 35, eceiayacpu D Do (10— )"} while the data given in
Table 1 imply that the sequence Ay /A, 5 is monotonously decreasing for even k from
k := 8 to k := 24. This indicates clearly that the long-term behaviour of the Ag(T)-
values and their signs cannot safely be deduced for even k from the values and signs
of the first 12 values Ay(Ty), Ay(Ta), - .., Agg(T4) given in Table 1.

PR IR S

Te
Figure 1. The trees Ty, Tp, and T

And indeed, as can be shown by the methods explained below, 7, + 7 < 0 holds for
T4 (i.e. Case (e) applies to T,s) and the Ag-values of the tree Ty computed using an
appropriate version of MAPLE for all even integers k up to k := 48 are all negative
from k := 36 on (cf. Table 2) and can be proven to remain negative for all larger
even integers k as well. This fact can, of course, not at all be guessed from just
glancing at the data found in Table 1 (though, as mentioned above and shown in
the appendix, it could have been deduced from these data by much more elaborate
computations). The reason for such an “irregular” behavior of the first 20-30 A (Ty)
values is the very small size of Dy relative to Dyay . Namely, for the tree T4 we have
72 = 1.45989 , Dyz) = 2.00019 and 7y = —1.70504 , D(n) = 0.00036.

However, even the pattern of signs in Table 2 is in no way sufficient to firmly con-
clude that the tree T, is subharmonic. They only imply that Ty is neither strictly
subharmonic nor strictly superharmonic. In order to deduce from such a table more
or less reliably whether a tree with, say, up to 20 vertices is sub- or superharmonic, it
is probably necessary to compute its Ag-values for k well beyond 100. And even then,
without additional evidence, we could not be completely certain that our conclusions
would be correct.
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k ) Wi(Ta) R Ag(T)
25 1617969924 7525503334384
26 3460544512 14032966377128
27 7401486378 | 78310807410972
28 15830479488 118782938373516
29 33858631470 829330443913404
30 72417753058 917966468333276
31 154889068112 8961723340508788
32 331281092954 5755015235157116
33 708553351386 99026831640465224
34 1515474204430 13614337520753744
35 3241339658354 1120464125966189244
36 6932670889792 --432443355915485476
37 14827796621022 12985357245959838076
38 31714121312680 —11732702471263166068
39 67831081354106 154015119131905565724
40 145079086578472 —214353735226099655328
41 310299360232976 1866152511517240178368
42 663677288697752 —3419309680469574618272
43 1419492259936282 23042614116042618807612
44 3036051305922068 —51017389785142741138416
45 6493594746044944 289134849820233520918296
46 || 13888689210471374 —732533926091051831381732
47 || 29705532112242926 3676451248194800524753184
48 || 63535055639566590 | - 10268993009027211743444116
49 || 135890623658955784 |  47247877667850844273976504

Table 2. Wy and Ay for the molecular graph Ty of 5, 6-dimethyldecane for larger
values of k (cf. Table 1). These data are sufficient to claim that Ty is not strictly
superharmonic, but not to decide whether it is sub— or superharmonic.

In Table 3, we illustrate yet another weak point of the “direct approach”. In the case
of the tree Tz — the molecular graph of 2, 4, 7-trimethyl-4-tert-butylnonane (n = 16),
Ax(Tc) is negative for even numbers k up to k = 36, hinting towards the possibility
that Tt is strictly subharmonic. Then, for 38 < k < 54, the Ag-values are positive,
suggesting superharmonicity. Only when k exceeds 54, A, becomes negative again
for even k and probably remains negative for all even k > 56. This example shows
that, even though strictness can definitely be disproved by computing the signs of
sufficiently many Ag-values, the naive direct approach cannot be used that easily for
proving that a tree is strictly sub— or superharmonic.

In summary: The naive direct approach was found to be unable to serve its purpose
and had to be abandoned, and other, computationally more demanding and, from
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2k Ao (Te)
2 —616
4 —7864
6 -119556
8 —1936560
10 —32143020
12 —538676948
14 —9053235488
16 —151980856232
18 —2540974364448
20 —42192557158844
22 —693638472648884
24 ~11243975183533360
26 ~178668845293823716
28 —2757598667159179516
30 —40650162183065801484
32 —556386768219784654320
34 ~6529496017196673730904
36 —48271348722870087779556
38 507003868815924255443424
40 36289514317018021740231980
42 1180926160001921976793959740
44 31165486754137308102443252720
46 734144499880100262063341269120
48 15756939423401815255741381765240
50 301714217416097306852302865378204
52 4654169274049470568618646581368116
54 29276576319690047698978623364719176
56 —1883120203759299863282577365860763196
58 —126526291994352059350645136900779826236
60 —5618728087243412090304580558749272389084
62 —217699239480595001153697197265350064643704
64 ~7908469386021268897703975161363101580966728
66 —277395384686898311330933876848472398634947108
68 —9532607914649309506765937115284611891191771872
70 —323537515741240552653520209472570806695522691724
72 —10896484479986146759657466623812040423389487682388
74 —365209089625273972114894119074197359284933909539776
6 -12202890874513453232014763107691 161236954755080746056
78 —406944856873717750596569702188233742431711819514157824
80 || —13554008022795001545532739474455550071853221 680058498252

Table 3. Ay -values for the molecular graph T of 2,4, 7-trimethyl- 4-tert -butylnona-
ne. This ezample illustrates the difficulties in establishing strictly sub- and superhar-
monicity. Analysis based on Theorem 3 shows that Te is subharmonic.
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a numerical point of view, much more elaborate methods of calculation based on
Theorem 2 had to be pursued.

3 Other Methods of Computation

To determine whether a given tree is sub- or superharmonic, one can of course make
use of Theorem 2. However, a direct application of that theorem is not that easy.
The main problem is determining which graph eigenvalues are main and which are
not, because the apparently very simple criterion “Dy, > 0 for main and D, = 0
for non-main eigenvalues” is not always easy to apply in practice. Indeed, we have
encountered some non-zero D,-values below 0.0000001 that are clearly difficult to
distinguish from 0 in standard numerical computations.

We have overcome these difficulties by applying suitable results from spectral graph
theory. Our first method makes use of the complement

o (1(5) 1)

of a graph G = (V, E), i.e. that graph G whose adjacency matrix Ag coincides with
the matrix J — (I + Ag) where J is the all-one matriz and [ is the unit matrix. By
reference to this graph, the main eigenvalues of ' can be characterized as follows:

Theorem 3 [22, p. 55] A real number y is a main etgenvaelue of a graph G if and
only if .
dimU,(G) =dimU_,_,(G) + 1

holds. In particular, if dim Uu(G) = 1 holds, then p is a main eigenvalue if and only
if =it — 1 is not an eigenvalue of G.

Another method for determining all main eigenvalues of a graph G can be based on
the following observation that will also be detailed in the appendix

Theorem 4 Let j € RY be the all-one vector and consider the vectors A'j € RV (ie
Ng). Let M be the smallesi number such that the vectors j, Aj, ..., AMj are linearly
dependent. Then M coincides with the number N = N of distinct main eigenvalues
of G, there erist unique integers zo, z1,... ,zy. , with

A¥j = agit i Af 4y AV,
and the main eigenvalues of G are ezactly the roots of the polynomial

maing(z) =1 — ey _ 2V — gy NP 2.

In particular, this polynomial has simple roots, only.
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Remark 5 Note that for obtaining the polynomial maing(z), only integer calcula-
tions are nceded. Note also that its coefficients z,z1,... ,zp-, provide a recursive
Jormula for the vectors ALj and the number of walks of length k > M - Indeed, we

have A

Wy = Z 2a i Wiy
=1

forallk > M.

By means of either of the above two results, it is possible to determine the main eigen-
values of a graph by computing eigenvalues only, i.e. without computing the eigenvec-
tors. In our calculations, we first employed Theorem 3 in the following way: For any
tree T' from our list with n vertices, we computed the eigenvalues A, > Ay > -+~ \, of
T and the eigenvalues X, > X > --- A, of its complement T (with multiplicities) up
.to 12 decimal places, and considered equality to hold between an eigenvalue ); of G
and a term of the form —1 -3} for some eigenvalue X; of T if the difference A +X; +1
was smaller than 5-107'°,

In a second step, we also calculated the main eigenvalues of all trees in our list
using Theorem 4 (the MAPLE subroutine developed for this task is available at
www.mathematik.uni-bielefeld.de/ grunew/mvalues).

Once the main eigenvalues of a graph are known, its sub- or superharmonicity can
easily be decided in the Cases (b), (c), (d), and (e) (see Theorem 2). Only in Case
(f), it is necessary to compute Dyz) and Din). Yet, these values never needed to be
computed with a very high accuracy to reach a conclusion. Luckily, the Case (g) has
never been encountered among the trees examined (nor was any tree with 18 or fewer
vertices found to be almost harmonic, nor did the Case (c) ever occur). Applying
this kind of reasoning to the results of both computations, exactly the same trees
were found to be sub- or superharmonic, respectively, thus corroborating our findings
beyond reasonable doubt.

Two typical results are presented in Table 4. These pertain to the superharmonic
trees T3 and T5 depicted in Figure 2.

Remark 6 Note that we could also have used Theorem 3 to determine the polynomial
maing(z) by integer calculations only: Indeed, denoting the derivative na,z" !+ (n—
1)@z 2+ ---+ay of a polynomial p(z) := @z + @12 ' + - + a1z + ap by
p'(z) as usual and defining polynomiais p,(z) to pa(z) as follows

pi(z) = det(z] - Ag),

pa() = ged(pi(2), pi (),

p3(z) = det(z] — Ag) = det(z] - J+ 1 + Ag),
Pa(z) = (=1)¥'p3(—1 - z) = det(J + =] — Ag),

ps(z) := ged(pa(z), pa(z)),
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po(z) = palz)/ps(z),

p2(x) = pa(z)/p5(7),

ps(z) := ged(pi(z)/pa(z), po(2)pr (),
po(z) = pi(2)/ (p2(2)ps(2)),

it follows immediately from Theorem 3 that, up to normahization if required, maing(z) =
po(z) must hold.

Alternatively, one can also compute maing(z) usind the following sequence of poly-
nomials:

qi(z) := pi(z) = det(z] — Ag),
¢2(z) = pa(z) = det(J + zI — Ag),
03(z) = ged(q1(z), ga(z)),

2(z) = ai(z)/g3(z),

as(z) =g,

26(z) == ged(ge(2), gs(x)?),

97(z) == qa(x)/gs(2).

Then, also maing(z) = g7(z) must hold.

However, we did not run either of these two routines for computing maing(z) because
we considered the evidence derived from the fact that the two procedures desribed
further above yielded the same result to be sufficiently convincing.

4 Discussion

By means of the calculation techniques described in the previous section, we have
examined all trees with n < 18 vertices in two independent ways and established for
any such tree whether it is harmonic, almost harmonic, superharmonic or subhar-
monic. For reasons explained above (cf. Table 3), we did not endeavor to distinguish
between strictly and non-strictly subharmonic trees.

Our main findings are the following
¢ Among trees with 18 or fewer vertices, there is no one that is almost harmonic.

¢ Most trees with 18 or fewer vertices, altogether such 204,990 trees, are subhar-
monic. For 204,431 of them, the smallest eigenvalue is a main eigenvalue.

e There exist exactly 11 superharmonic trees with 18 or fewer vertices, viz. the
trees Ty to Ty in Figure 2. The smallest of those has 12 vertices. The only
strictly superharmonic tree with at most 18 vertices is the tree Tj.



Figure 2. The 11 superharmonic trees with 18 or fewer vertices. The smallest
superharmonic tree T\ has 12 vertices and 13 characterized by that property among
all trees with at most that many vertices. Note that only the last one of those 11
trees is not a “chemical” tree because it has vertices of degree above 4.
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The following problems, however, remain open:

Are there any trees (or, at least, graphs) that are almost harmonic?

As mentioned already above, it has been shown in [25] that, for any finite graph
G, there exists a unique smallest number &(G) such that

sign(Au(G) (G) = sign(Ax(G))

holds for all k > k(G). Thus, as there are only finitely many graphs with up to
n vertices, there exists a unique smallest even number k(nr) for any number n
such that any tree T with up to n vertices and Ay (7T) > 0 is superharmonic,
and any tree T with up to n vertices and Agp)(T) < 0 is subharmonic, viz. the
maximum of the numbers k(T') over all trees T with up to n vertices.

Thus, if an upper bound for the number k(n) could be computed without first
computing the numbers k(T) for all trees T with up to n vertices, the naive
“direct approach” would work indeed for the trees studied in this paper provided
we could compute the numbers Ay5)(T) for all trees T with up to 18 vertices.
Since Agp < 0 holds for the superharmonic tree Ty with 17 vertices, k(18) must
be at least 162.

However, we do not know how to derive such an upper bound by direct reason-
ing, we have no idea whether the function k(n) can be expected to grow linearly
or, at least, polynomially with n, nor do we expect the number k(n) to be small
enough so that computing those numbers Ag,) in the naive fashion described
in Section 2 would be feasible.

Is the fact that less than 2% of the trees with 18 or fewer vertices whose smallest
eigenvalue is not a main eigenvalue are superharmonic a “small number phe-
nomenon”? More precisely: What can be said about the ratio of the number of
sub- and superharmonic trees with n vertices whose smallest eigenvalue is not
a main eigenvalue for n going to infinity?

Finally, it would also be of interest to know whether the ratio of the number
of trees with n vertices whose smallest eigenvalue is a main eigenvalue and the
number of all trees with n vertices goes to 1 for n going to infinity?

The computational details by means of which it could be established that 7% and
T; are superharmonic are found in the caption of Table 4. Case (d) of Theorem 2
is applicable for the trees Ty, T, T3, Ty, Ts, Tz, Ty, Tio, and Ty, . Case (f) of
Theorem 2 is applicable to the trees T3 and Ty. As a curiosity, we mention that for
this latter tree, Dpgy (1 — 72)® = 0.026245 is only slightly, but clearly enough above
Dy (11 + m)? = 0.025585.
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i Ai(T2) Dwy(Ty) =1 = Ai5-i(T3)
1| M 2.414213562373 | 10.24264 1.618033988750
2 1.618033988750 .00000 1.618033988750
3 1.618033988750 00000 1.284434588588
41 M 1.000000000000 | 2.00000 618033988750
5 618033988750 .00000 (618033988750
6 618033988750 00000 414213562373
i 414213562373 .00000 —.063707558882
8 (| M —.414213562373| 1.75736 —.618033988750
9 —.618033988750 .00000 —.618033988750
10 —-.618033988750 .00000 { -1.000000000000
11 —1.000000000000 .00000 | —1.618033988750
12 —1.618033988750 .00000 | —1.618033988750
13 —1.618033988750 00000 | —2.414213562373
14 —2.414213562373 .00000 | —12.220727029706
i A(Ty) Dy (Ts) -1 - s i(Ty)
1| M 2193527085331 | 13.05251 2.046970621622
2 M 2.035648404257 96169 1.712215502960
3|\ M 1.690692744042 58352 1.305732112092
4| M 1.294962899292 15219 1.193527085331
5 1.193527085331 .00000 899670904634
6 M 884132539245 10981 643891143493
T\ M 464761522222 | 1.62404 .294962899292
8 .294962899292 .00000 .000000000000
9 000000000000 .00000 —.294863164756
10| M —.294962899292 .00064 —.456262907790
11| M —.464761522222 104939 —.844838401178
12 || M —.884132539245 19413 | —1.180658883726
13 || M —1.193527085331 {06156 | —1.294962899292
14 —1.294962899292 00000 | —1.639951477270
15| M —1.690692744042 21035 | —2.035609187735
16 | M —2.035648404257 00016 | —2.193527085331
17 —2.193527085331 00000 | —15.156296262346

Table 4. Numerical data needed for applying Theorem 8. M indicates the main
eigenvalues. The tree T is superharmonic because r, = 1.00000 is greater than |tn| =
0.414214 (Case {d) in Theorem 2) while Ts is superharmonic because Dy (1 —72)% =
0.02397 is greater than Diny (1) + 7)? = 0.00287 (Case (f) in Theorem 2 ).
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5 Appendix

Let us note first that, given any field K" and any map @ : K — K of finite support,
one can always recover the map & from the first few terms of the associated sequence

W(®) := (}: tb('r)r") .
TEK kENo

More precisely, denoting the k-th term 3, &(7)7* in that sequence for every k € N,
by Wi = Wi(®), the following facts are well known from the theory of linearly
recursive sequences:

Theorem 5 The cardinality of the support supp(®) = {7 € K : &(7) # 0} of ®
coincides with the smallest integer N € Ny for which the determinant of the associated
(N + 1) x (N +1) Hankel matriz

H(W(@), N) = (H/H‘j)ikjso,...‘h'

vanishes, the support of & consists of the (necessarily distinct) zeros of the polynomial

N - ZN-1 N~ zn_gz”“z — s =29
where the coefficients zg, z1,. .. , zy-1 are the (necessarily unique) elements in K with
(7) Win = 20Wi + 20Wis + -+ 2pv o Wv oy

for alli =0,...,N — 1, while — given the number N and the set supp(®) — the
images (1) of the elements T € supp(®) are, essentially by definition, solutions of
the system of N linear equations

Wi= 3 @@ (i=0,...,N-1)
TEsupp(%)

and thus are uniquely determined by the number N, the set supp(®), and the first N
terms Wy, Wy, ..., Wy of the sequence W(®) in view of the fact that the determinant
of the Vandermonde matriz

V(Supp(é)) = (Tk)rEsupp(ﬁ).s:U,,,,.N—]

does not vanish.

Moreover, the recursion (7) that allows to determine the terms Wy, W41, Wan_, of
the sequence W(®) from the first N terms Wy, Wy, W1, holds for all i € Ny and,
thus, allows to compute all the terms Wy, in that sequence from its first N term in a lin-
early recursive fashion (provided one knows already the coefficients zp,z),... ,zn )

Proof: Indeed, labelling the N elements in supp(®) by 7, 7s,..., 7y and denoting

(i) the (M +1) x N matrix (7})izo, mj=1, v by Tp,
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(i) the coeflicients of the polynomial p(z) == [],_, y(z —7) by 20, 21,... , 281
so that
)= ] @=m)=z" ~an iz 2y et - g
=1 N
holds,

(iii) the ®-image ®(n;) of 7; by Dy fori=1,..., N,
(iv) and the non-singular diagonal N x N matrix (65 Dy )i g=1,..v by D,
it is easily seen that the identity
H(W(®), My, My) = Tp, D Ty,
holds for the Hankel matrices
H(W(®), My, My) := (Wisj)izo,..M g=0, M2
for all My, M, € Ny, and that the product
(20,21, .- y2nv-1,—1) Tn

of the (N + 1) vector (zo, z1,-..,2n_1, —1) with the (N 4+ 1) x N matrix Ty coin-
cides with the N vector (p(r;),p(72),... ,p(ta)) and, thus, vanishes. The assertions
of the theorem follow immediately from these simple (and well-known) observations. 1

The claim stated in the footnote in Section 2 follows immediately from Theorem 5.
To establish also the claims made in Theorem 4, recall first that, given

(i) afield K,

(i) a n x n matrix A = (ag)ij=1,..n with coefficients a;; € K and eigenspaces
Uy =Uu(A) = {u € K"Au = pu} (u€ K),

(iii) and a vector j € K™,
the dimension N(A, j) of the subspace
U=U(Aj) = (4% : k€ No)y

of K™ spanned by the vectors in the A-invariant subset {j, A4 j, A2, A*4,...} of K™
generated by the vector j, always coincides with the smallest integer N for which the
vector A¥ j can be expressed as a linear combination

®) AVj= Y At
k=0, N1
of the preceding vectors j, 4§, A?j, A%j,..., A¥~' 4, and the polynomial

N N-1 N=-2
Paj(z) =z" —zyaz" ' —2naz T = -2
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defined in terms of the coefficients z;, z;,...,2zxy-; € K in that linear combination is
the characteristic polynomial of the linear operator A|U : U = U defined by restrict-
ing the linear operator A to the (A-invariant!) subspace U = U(4, 7).

Thus, if
specg(A) := {n € K : dimU, > 0}
denotes the set of eigenvalues of A in K, if
JE @ Uy

nespecy(A)
holds (in particular, if K™ = @ucqpec (4)Uu holds, i.e. if A is diagonalizable and K
contains all eigenvalues of 4), and if
(9 j= z Ju

nEspecy(A)

is the corresponding decomposition of the vector j into its components j, € U,,, the
number N(A, 7) coincides also with the cardinality s := #specg (A, j) of the set

speci(A, ) = {4 € specx(A) : 7, # 0}

because we have clearly

(10) U(A,7) C (Ju : 1 € specg(A)) e = (Ju * 1 € specg(A4,5))
in view of
A= 3 pru€ Gt e speck(A, )y
uEspecsc(A,)

for all k € Ny while the non-vanishing of the determinant of the Vandermonde matrix
V{speck (A, 7)) := (4*)u € specge (4, 1),k =0,...,5 — 1

implies that the elements

Aj= Y ph (k=0....,5-1)

LEspec(A,5)
actually form a basis of the space (j, : p € specy (A, 7)) yielding that equality must
hold in (10), that
UAi = @ G

ueEspec(Af)

is the eigenspace decomposition of U(A, j) relative to the linear operator A[”that
maps U into itself, and that the polynomial

N N-1 N-2
pajlz) =z" —zy @ —ZN-2T il

considered above must therefore coincide with the product Hnssmk(”)(z — [s).
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This implies all assertions of Theorem 4 except the assertion that the coefficients
Zn-1,- ", 29 Inust be integers in the specific case considered in that theorem. How-
ever, this is a simple consequence of the fact that in case K is the real number field R,
and A and j have integer coefficients, the coefficients zy_;, - - - , Zg satisfying the iden-
tity (8) must be rational numbers on the one hand and algebraic integers on the other
because the roots of the polynomial p4 ;(z) = 2N —ap a2V 2Ny,
being also roots of the characteristic polynomial of A, are necessarily algebraic inte-
gers. This, finally, establishes Theorem 4.
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