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Abstract: Using an equation by Longuet-Higgins, a method for rapid determination of
eigenvalues having symmetrical eigenvectors is illustrated. This equation was used to
determine the points of singularity for the density of states for two frequently studied
infinite conjugated benzenoid polymers.

Introduction

Eigenvectors (HMO wave functions) of a molecular graph can be partially or fully
deduced from the Coulson pairing theorem,' Hall subgraphs,” McClelland subgraphs,*™
the Longuet-Higgins equation,5 Kassman's path deletion method,® and Mukherjee and
Datta’s vertex deletion method.” The purpose of this paper is to use’ Longuet-Higgins’
equation o find the eigenvalues (HMO energy levels) that correspond to the symmetrical
eigenvectors (those 7 orbitals eigenvectors with sets of coefficients that have the full
symmetry of the graph, i.e. based on the totally symmetric adjacency eigenvectors). At
this point, it is worthwhile to note the most positive eigenvalue will have an eigenvector
with a single sign for all coefficients and consequently this eigenvalue will be among the
eigenvalues having symmetrical eigenvectors.

We have previously® detailed an algorithm which uses the following equation by
Longuet-Higgins (¢f. with Figure 1) for determining the unnormalized eigenvector
coefficients for a given eigenvalue X,

XCiw+ Cot Cis+ Cp= 0.

Civ is the eigenvector coefficient for some central (carbon) vertex u with adjacent vertices
of r, s, and t. Herein, we show how to use this equation on symmetrical molecular graphs
to determine the eigenvalues belonging to the symmetrical eigenvectors in a way that
complements McClelland’s mirror-plane fragmentation method. McClelland’s method
identifies the eigenvalues belonging to the antisymmetric eigenvectors, and Hall's
embedding method may identify cigenvalues belonging to either antisymmetric or
symmetric eigenvectors, depending on the molecular graph. We will show how to use
this algorithm on alternant two-fold and three-fold symmetrical molecular graphs in
which the former includes linear polymers.
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general vertex
XiCoy+ Cyp + Cis+ =0

Figure 1. The general relationship for any given molecular graph vertex u and its eigenvecior coefficient C;,
for any ith eigenvalue JX; belonging to the molecular graph.

Results and Discussion

Phenaleny] monoradical and perylene

Gur algorithm is most expeditiously performed on molecular graphs having sites
that are equivalent by symmetry. The molecular graph of phenalenyl is representative of a
three-fold symmetrical m—electronic system in which a C, = 2n/n = 120° rotation moves
both starred and nonstarred carbon vertices into equivalent sites. In Figure 2, each
symmetry distinct site is alphabetically labelled. Using the Longuet-Higgins equation on
each of these four distinct sites gives four linear equations that can be solved for the
symmetrical eigenvalues of phenalenyl monoradical. Previously, we showed that
molecular graphs with greater than two-fold symmetry invariably had a doubly
degenerate subset of cigenvalues.® For three-fold molecular graphs, two-thirds of the
cigenvalues belong to the doubly degenerate subset and the other third are unique, except
for accidental degeneracy (usually 1 eigznvalues); odd carbon vertex-centric molecular
graphs, like phenalenyl, have an extra (zero) eigenvalue. The doubly degenerate subset of
eigenvalues for phenalenyl have been listed in our handbook.’ Figure 2 shows that the
unique eigenvalue subset of three-fold molecular graphs is given by our algonthm. It can
be shown that phenalenyl can be embedded by pentaleny! three distinct ways, two them
being mutually exclusive, resulting in the doubly degenerate eigenvalue subset consisting
of the +1, #V3 eigenvalues belonging to pentadienyl and having associated antisymmetric
eigenvectors
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Figure 2. Determination of the eigenvalues having corresponding symmetric eigenvectors by
using the algorithm in Figure 1.

Figure 3 shows perylene embedded in bold by 1,3,5,7-octatetraene (Lg). Also,
shown are four selective lineations (lines) cormresponding to four distinct ethene
embeddings leading to four £1 eigenvalue pairs; two pairs are antisymmetric (one already
belonging to octatetraene embedding) and the other two symmetric. Thus, perylene has
10 antisymmetric eigenvectors. The second molecular graph in Figure 3 shows perylene
only partially alphabetically labelled. These labelled sites are distinct but not in regard to
a single symmetry axis like phenalenyl. To obtain all the eigenvalues having symmetrical
eigenvectors without having to solve a 12x12 secular determinant, we will solve the 6x6
secular determinant shown (Figure 3) and use the pairing theorem for alternant molecular
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Figure 3. Dy ination of the eigenvalues having di ic eigt by using the algorithm in Figure 1
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graphs to obtain the remaining ones. Small determinants of this size can be easily handled
by the Laplace expansion method. Thus, perylene has 10 symmetric eigenvectors.

Three-fold molecular graphs

Figure 4 shows two molecular graphs corresponding to triphenylene (top) and
tribenzo[a,f.m]coronene (bottom) with three-fold symmetry and the molecular graph of
coronene (middle) with six-fold symmetry. To obtain the unique symmetric eigenvectors
of the molecular graphs in Figure 4, we used the abbreviated method illustrated for
perylene. Triphenylene (C sH);) has 6 unique eigenvalues corresponding to symmetric
eigenvectors, coronene (Cy4H)») has 8, and tribenzocoronene (CssHig) has 12. In Figure 4
the unnormalized eigenvector coefficients are also given where the first coefficient (a =
1) was assigned the value of one. The doubly de%enerate subset of eigenvalues for the
molecular graphs in Figure 4 have been listed.*"'

a
5 Kaii=o

-0.8794; a=1,b=-18794,c=0.6527
1.3473; a=1,5=023473,¢c=-0.5321
2.5321; a=1,b=1.5321,c=2.8794

&5

L3 +Xx-5=0

-1.2143;a=1,b=-2.2143, c = 0.6888
15392;a=1,5=0.5392, ¢ = -1.1701
26755 a=1,b=16751,c=24811

X5k raxt 4 120 - 16X -4 +8=0

-l41425;a=1,b=-2.41421,¢c = 241421, d = -3.41421,
e=10,/=14142]

0.73205;a= 1, b=-0.26795, ¢ = -1.1962, d = -0.6077,
e=-2.2679,/=-0.830
1.0000;a=1,6=0,c=-1,d=0,e=0, /=1
141421;a= 1, b= 041421, ¢ = -0.41421, d = -0.5858,
e=10,/=-141421
20000;a=1,6=1.0,c=1.0,d=0,e=-10,/=0
2.73205;a= 1, b= 1.73205, c = 3.73205, 4 = 4.73205,
e=6.4641, /=273205
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Figure 4. Unique cigenvalues having symmetric eigenvectors and their corresponding unnormalized
coefficients.
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Polymeric benzenoid strips

Hosoya and coworkers'' have discussed the use and limitations of cyclic
boundary conditions in the analysis of the infinite linear polymer systems given in Figure
5. They determined the density of states for a number of infinitely large polymeric
benzenoid strips and showed that the energ?/ levels of the cyclic dimer determined the
singular points of their density of states.” Previously I showed that infinitely long
polymer strips like polyacene (top molecular graph in Figure 5) could have their density
of states determined by progressively embedding with increasing longer acenes (i.e.,
benzene, naphthalene, anthracene, tetracene, pentacene, etc.).'> In this recursive process
one could observe the growth the continuum of energy levels which ultimately formed
the valence and conduction bands; in many cases, these could be projected after just a
few progressive embedding iterations.

Polyacene and poly(perinaphthalene) in Figure $ possess a plane of symmetry
bisecting the strip into two sections. Poly(perinaphthalene) can be embedded by
polyacetylene, and, thus, both polymers must have a zero band gap. Each naphthalene
monomer (unit cell)of poly(perinaphthalene) can be embedded by ethene, an example of
which is displayed at the right in Figure 5. This leads us to expect that the density of
states for poly(perinaphthalene) will be particularly dense at the +1 eigenvalues. For
other [sltudies which include these infinite polymers the reader should consult our prior
work.

The eigenvalue singular points for the density of states corresponding to
symmetrical eigenvectors have been computed in Figure 5 for polyacene and
poly(perinaphthalene) using the algorithm of Figure 1. Using an equivalent procedure,
the singular points for the antisymmetric eigenvalues can be obtained; for polyacene they
are 1.5616 and —2.5616 and for poly(perinaphthalene) they are 0 and 2.0000. Since the
unit cell for polyacene contains only four carbon vertices, our algorithm has easily
generated all the singular points of the density of states. However, the unit cell for
poly(perinaphthalene) has ten vertices and our algorithm was truncated, as it was for
perylene, to give 5 of the 10 singular points. We must use the pairing theorem to obtain
the remaining 5 singular points.

While our results for poly(perinaphthalene) are in total agreement with the results
of Hosoya and coworkers,'' our results for polyacene differ in that the earlier workers
also obtained the additional singular points of 0 and 1.0000. There are two fundamental
differences between these two polymer strips that may be relevant. Polyacene
(CanszHasr4) can be constructed only by starting with an ethene seed structure (C;Hy4) and
successively attaching the n 1,3-butadienetetrayl aufbau units (C4H,), whereas
poly(naphthalene) (Cg,Ha,+4) has the same starting carbon skeleton seed structure and
autbau unit. This could suggest that some king of end group effect is the cause.

In principle, the density of states interval can be open, closed, or half open. The
open interval (a,b) determined by numbers @ and b where a < b is the set of ail real
numbers x such that @ < x < b. The closed interval [a,b] determined by a and b is the set
of all real numbers x such that @ < x < b. If just one of a or b is excluded from this closed
interval, the resulting set of numbers is called the half-open interval, {a,b) or (a,b]. The
density of states interval for polyacene is bounded by (0,1] and for poly(naphthalene) by
[0, 0.73205]. Perhaps, our algorithm can only determine the singular points to (fully)
closed density of states intervals. Both of these differences appear to be related and are
perhaps some type of end-group effect,
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Figure 5. Polyacene and poly(perinaphthalene) benzenoid infinite polymer strips, respectively, and their symmetrical

singular points of the density of states.
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