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Abstract

We prove that amongst all fullerenes the dodecahedron has maximum small-
est eigenvalue (equal to —v/5), followed by the three fullerenes that have all their
hexagons disjoint (the unique fullerenes on 24 and 26 vertices, and the tetrahedral
fullerene on 28 vertices), for which the smallest eigenvalue is in each case equal
to —1 — v/2. We also prove that amongst all IPR fullerenes the icosahedral Cgp
fullerene has maximum smallest eigenvalue (equal to —¢? where ¢ is the golden

ratio (14 v/5)/2).

1 Introduction

Fullerenes have recently attracted much attention both in chemistry and mathematics.
From the mathematical point of view, they are 3-regular planar graphs with faces being
only pentagons and hexagons. From Euler’s formula |V| - |E| + |F| = 2, where V, E and
F are the sets of vertices, edges and faces, respectively, one can deduce that fullerenes
have exactly 12 pentagons. Since they are 3-regular, their largest eigenvalue is equal to 3,
and since they are not bipartite, their smallest eigenvalue is larger than —3. For results on
the eigenvalues of regular and bipartite graphs see {5}, and for definitions of other terms
see [2].
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1389 of the Serbian Ministry of Science, Technology and Development (MNTR).
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Recall that the spiral for a fullerene graph is constructed by starting on a f[ace and passing
through all other faces exactly once in succession in a tight winding such that each face
added to the spiral is in contact with the immediately previous and the earliest still open
face [6]. Each successful spiral out of the 6/V| possible spiral starts is denoted by a number
made up of twelve 5’s and (|V|/2 — 10) 6's for the pentagons and the hexagons, and the
spiral code for a fullerene is the lexicographical minimum of these numbers. All fullerenes
with < 176 vertices are known to have spiral codes [3]; all with < 100 vertices have a
spiral beginning with a pentagon; the smallest known fullerene graph without a spiral
code has 380 vertices [6]. Specific fullerene isomers will be labelled here by {a : b) where a
is the number of vertices and b is the position of in the spiral order of general (adjacent-
pentagon and isolated-pentagon) fullerenes; for the size range of {ullerenes discussed here
no ambiguity from technical incompleteness of the spiral construction will arise.

In Section 2 we prove that amongst all fullerenes the dodecahedron has maximum smallest
eigenvalue (equal to —\/g) followed by the unique fullerenes on 24 and 26 vertices and
the tetrahedral fullerene on 28 vertices (all with smallest eigenvalue equal to —1 — V/2).
Then in Section 3 we prove that amongst all IPR fullerenes the icosahedral isomer of Cgp
has maximum smallest eigenvalue (equal to —&? where ¢ is the golden ratio). Finally, in
Section 4 we analyze the correlation between the smallest eigenvalue and the number of
pentagon adjacencies in fullerenes.

The fullerenes can be arranged in decreasing order by their smallest eigenvalue. We will
call this arrangement the smallest-eigenvalue order, but it should be noted that there
are nonisomorphic fullerenes with the same smallest eigenvalue, so that the word “order”
above is not intended to mean a linear order. In this terminology, the above results state
that the dodecahedron is the first fullerene in the smallest-eigenvalue order of fullerenes,
followed by the unique fullerenes on 24 and 26 vertices and the tetrahedral fullerene on 28
vertices, and also that the icosahedral Cgy fullerene is the first in the smallest-eigenvalue
order of IPR fullerenes.

In the proofs, we use the famous Cauchy interlacing theorem (5, p.19).

Theorem 1 (The interlacing theorem) Let H be an induced subgraph of graph G. If
the eigenvalues of G are \y > Ay > ... > X,, and the eigenvalues of H are 1y > jp >
o 2 fhm, then Ay Z o > Aapugy fori=1,2,...,m. L]

In fact, we use only pm > An.

2 Smallest-eigenvalue order of fullerenes

Theorem 2 The dodecahedron has imazimum smallest eigenvalue amongst all fullerenes.

Proof The eigenvalues (and multiplicities) of the dodecahedral graph [5] are +3 (1),
+V5 (3), +1 (5), 0 (4), =2 (4), —v/5 (3) and the dodecahedron thus has smallest eigen-
value A, = Ay equal to —v/5 = —2.236. This eigenvalue occurs with multiplicity 3. The
dodecahedron is also the unique fullerene for which all faces are pentagons.

Now, let G be a fullerene with n vertices, different from the dodecahedron, and let A,
denote the smallest eigenvalue of G. Since G is different from the dodecahedron, one
of its pentagons is adjacent to a hexagon, and then the graph H,, depicted in Fig. 1,
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Figure 1: The induced subgraph H,.

must be a subgraph of G. Moreover, H; is an induced subgraph of G, and since by
direct computation the smallest eigenvalue of H, is equal to —1 — /2 = —2.414, from the
interlacing theorem we deduce that A, < —1 — /2 < — /5.

It remains to prove that H, is an induced subgraph of G. We prove this by supposing
that there exists an edge between two of the vertices K, I(», Ly, ..., Ls and showing
that any choice of the end vertices of this edge leads to a contradiction. The conclusion
to which we arrive in each case is that one of the faces, to which the hypothetical edge
belongs, either

e has an inappropriate length, i.e. it has either less than 5 or more than 6 edges, or

e it has “double” edges, i.e. there exists an edge such that this same face appears on
both of its sides.

Since the number of distinct cases is rather large, we illustrate the proof by considering
the possibility of an edge joining K, and K,. Remaining cases are considered in the same
way.

Suppose that the vertices K| and K, are joined by an edge e. The edge e cannot be placed
inside the pentagon containing K, and K, otherwise the vertices K, K3 and M, will
form a triangle, which is impossible in a fullerene. Therefore, the edge e must be placed
outside this face, as on Fig. 2. Let Fy be the face determined by edges e and K, M,, and
let F, be the face determined by edges e and K, N;.

We see that in the face F), if we go along the edge e from K to K,, then F, must also
contain edges KoM and M;L;. On the other hand, if we go along the edge e from K, to
Ky, then F| must also contain edges K| Af; and again M, L,. Thus, the face F\ appears
on both sides of the edge M, L,, which is a contradiction.

We could also argue in the following way. We see that in the face Fy, if we go along the
edge e from K to K>, then F; must also contain edges KoNa, NoMs and MsLs. On the
other hand, if we go along the edge e from Ky to /(y, then F» must also contain edges
KNy, Ny M, and MyL,. But then the face F, has more than seven edges, which is also
a contradiction. L]
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Figure 3: The tetrahedral fullerene on 28 vertices that has isolated hexagons (picture
generated by CaGe [4]). This is isomer (28 : 2) in the spiral nomenclature.

Remark Using a similar proof technique (and a much larger number of cases), it is
shown in [7] that amongst all fullerenes the dodecahedron has minimum second largest
eigenvalue.

The unique fullerenes on 24 and 26 vertices and the one of the two fullerenes on 28 vertices
that is depicted in Fig. 3 all have smallest eigenvalue equal to —1 — /2 &~ —2.414. This
eigenvalue occurs with multiplicity 2, 3 and 4 in the 24-, 26- and 28-vertex fullerenes,
respectively. For the remaining fullerenes, we can prove the following.

Theorem 3 The smallest eigenvalue of a fullerene with at least 28 vertices, which is not
isomorphic to the fullerene in Fig. 3, is less than —1 — /2.

Proof Let G be a fullerene with at least 28 vertices, which is not isomorphic to a
fullerene in Fig. 3. We first prove that G contains two hexagons sharing an edge.
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Figure 4: Possible induced subgraphs Ha,, Has and Hy 3 (in that order).

Suppose the contrary. First of all, G cannot have exactly 28 vertices. There are exactly
two fullerenes with 28 vertices: one of them has two hexagons sharing an edge, and the
other one is excluded by an assumption of the theorem.
Therefore, suppose that G has more than 28 vertices. Now, from Euler’s formula and
properties of fullerenes cited above, the number Fy of hexagonal faces of G satisfies
Fs=2—12+g|V|_;V|=m~10.

2 2
If the hexagons are all disjoint, then as any pentagon can be adjacent to at most two
disjoint hexagons, the number of edges common to a hexagon and a pentagon is < 24, so
that F5 < 4, and from the above equality we obtain |V| < 28, which is a contradiction.
Therefore, G must contain two hexagons sharing an edge. Now it is not hard to prove,
using the same technique as in the proof of Theorem 2, that G must also contain as
an induced subgraph at least one of the graphs Hp;, Hz and Hay depicted in Fig. 4.
The smallest eigenvalues of Hyy, Hoz and Ha3 are approximately —2.5487, —2.5300
and —2.5097, respectively. From the interlacing theorem we conclude that the smallest
eigenvalue of G may not be greater than —2.5097, and thus must be less than —1 — /2 ~
—2.414. u

From the list of computational results on the fullerenes on at most 100 vertices, it seems
that the next three fullerenes in the smallest-eigenvalue order respectively have 32 vertices
with Agy = —2.5134 (32 : 6), 30 vertices with A3y ~ —2.5218 (30 : 3), and then comes the
non-tetrahedral isomer of Cyg (28 : 1) with Ays =2 —2.5247. From the interlacing theorem
we see that none of them can contain either Hay or Has as an induced subgraph.

3 Smallest-eigenvalue order of IPR fullerenes

It is observed in chemistry that fullerenes in which no two pentagons share an edge are
typically more stable than other fullerenes. This observation is called the isolated pentagon
rule (6] end such fullerenes are called IPR fullerenes. An IPR fullerene has at least 60
vertices, since it has 12 disjoint pentagons, and icosahedral Cgo is the unique smallest
IPR fullerene. Icosahedral Cgy is (60:1812) in the full spiral order. This fullerene has
many extremal properties, and another one we present here is that it is the first in the
smallest-eigenvalue order of IPR fullerenes.

Theorem 4 The icosahedral Cgy has mazimum smallest eigenvalue amonygst all IPR
fullerenes.
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Figure 5: The induced subgraph Hj.

Proof Let G be an [PR fullerene with n vertices, and let A, denote the smallest eigen-
value of G. We show that A\, > —¢? = —2.6180 (where ¢ is the golden ratio 14’5\/-5-) if and
only if G is isomorphic to the icosahedral Cgq.

First, the icosahedral Cgy has smallest eigenvalue A\, = A\gyp = —¢? and this eigenvalue
occurs with multiplicity 3.

Next, suppose that A, > —¢* holds. Let P be an arbitrary pentagon of G. Since G has
disjoint pentagons, the first layer of faces around P consists of five hexagons, and the
second layer of faces around P consists of ten faces, at least five of which are hexagons.
If there is a pentagon of G such that the second layer around it contains at least six
hexagons, then it must contain two adjacent hexagons and it is not hard to show, using
the technique from Theorem 2, that the graph Hs, depicted in Fig. 5, must be an induced
subgraph of G. The smallest eigenvalue of Hj is & —2.6229, and from the interlacing
theorem we obtain that A\, < —2.6229 < —¢?, which is a contradiction.

Thus, for each pentagon of G the second layer around it contains exactly five pentagons
and five hexagons in alternating order.

Next, we show that each vertex of G must belong to a pentagon. Suppose that v is a vertex
of G that does not belong to any pentagon, i.e. the first layer of faces around vertex v
consists of hexagons X;, X, and Xj;. If the second layer of faces around v contains a
pentagon P adjacent to only one of the hexagons X, X; and X3, then the other two
hexagons are adjacent hexagons in the second layer of faces around pentagon P, leading
to the graph Hy {Fig. 5) as an induced subgraph of G and by the interlacing theorem to
An € —2.6229 < —¢?, which is a contradiction.

Thus, the second layer of faces around vertex v has hexagons as faces adjacent to only
one of X, X; and X;. The second layer contains three more faces adjacent to two of X,
X3 and X3, which can be either pentagons or hexagons. There are four nonisomorphic
possibilities for such second layer, which are shown in Fig. 6, together with their smallest
eigenvalues. Since each of these possibilities has smallest eigenvalue smaller than —¢?, we
conclude that also A, < —@?, which is a contradiction.

From this we conclude that each vertex of G belongs to a pentagon, and since the pen-
tagons are disjoint in an IPR fullerene, the total number of vertices of G is equal to 60.
As the icosahedral isomer of Cg is the unique IPR fullerene with 60 vertices, we conclude
that G is isomorphic to the icosahedral Cgg. |
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Figure 6: Second layer of a vertex not belonging to a pentagon.

4 Empirical observations

The proven bounds give some exact but limited information on A, for the class of fullerene
graphs. In order to gather some empirical data on the typical behaviour of A, in the
chemically significant size range, adjacency spectra were calculated numerically for the
compiete set of 1456598 fullerenes with n = 20 + 2k vertices (k = 0....,40,k # 1) i.e.
the whole set of fullerenes from Cog to Cigg [6]. Table 1 collects the data on the minimum
and maximum values of A, at each n in the range and identifies by their spiral numbers
the isomers that realise the extreme values. Figure 7 illustrates the most obvious trend,
which is that [A,| appears to be a roughly increasing function of n, with both largest 2nd
smallest values at each n scattered about sublinear, increasing curves. The two curves
appear to be diverging, at least for these small vertex counts, as n and hence the size of
the isomer set at n increases. Deviations from an idealised smooth curve are significant
and Cgg in particular appears in a pronounced dip on the graph of maximum A, Isolated-
pentagon and general fulierenes show the same qualitative pattern (Figures Ta, 7b). The
tising form of all curves suggests as a plausible conjecture:

Conjecture 1 Amongst all fullerenes unth 60 or more vertices, wosahedral Cy (60.1812)
has the mazimum smallest ewgenvalue.

Examination of the isomers realising the extrema of |,| (Table 1) reveals clear systematic
behaviour there too: the fullerene isomers of minimum/maximum smallest eigenvalue tend
to appear respectively early and late in the spiral ordering at each n. Call the number
of pentagon-pentagon edges in a fullerene n,, the number of adjucent pentagons. By
construction, the spiral order show®®% trend with n,; early spirals include those of isomers
with large n,, and the late spirals those of isomers with few if any pentagon adjacencies;
the trend is not monotonic, as not all pentagon adjacencies are apparent in the form
of the spiral itsell, some appearing only alter it has been wrapped up to assemble the
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fullerene. For 20 < n < 100 the isomer of minimum smallest eigenvalue is sometimes
first, sometimes second or third in the spiral list (Table 1), and this variation is precisely
accounted for by the variation in n,, giving rise to the conjecture:

Conjecture 2 Amongst all fullerenes with a given number n of vertices, the one unth the
minimum smallest eigenvalue has the marimum number of pentagon edjecencies.

The curve of minimu A, (Figure 7(a)) shows local peaks at n = 20+ 10k; these correspond
to the cylindrical fullerene isomers composed of five-fold symmetric hexagonal barrels
capped by two hemi-dodecahedra, which all have n, = 20 and are local maxima in n,,.
At the other extreme, the variation of the maximum smallest eigenvalue with the num-
ber of pentagon adjacencies is also evident, but less regular. The isomer realising the
maximum A, is often, but not invariably, cne with the minimum achievable number of
pentagon adjacencies. Thus, for example, at n = 60, an isolated-pentagon isomer is pos-
sible, and has, as we have seen, the maximum Ag; however, the sequence for n = 70
is

A7 isomer n
-2.7269808024 70:8094
-2.7288600491 70:7957
-2.7307219693 70:7960
-2.7312384436  70:8090
-2.7320508076 70:8149
-2.7322755441  70:8008

O N RN

so that the unique isolated-pentagon isomer comes only fifth in the order, beaten by,
amongst others, the unique isomer with a single pair of adjacent pentagons. As Figure 8
shows, however, pentagon adjacency appears to be a qualitative predictor of A, within
isomer sets. n, is known to correlate with total quantum-mechanical energy, in that in
particular, if n is compatible with n, = 0, the most thermodynamically stable fullerenes
have isolated pentagons, and if n is not compatible with n, = 0, the most stable isomers
have the lowest achievable value of n, {1]. This could be taken to suggest an admittedly
indirect and decidedly approximate chemical significance for A,, but the significant quan-
tity is actually n,, which correlates well with curvature and other measures of molecular
strain. Interestingly, the total quantum-mechanical energy correlates very poorly with
the graph-theoretical energy quantity, the Hiickel energy (which is defined by a particular
sum of adjacency eigenvalues (8]), indicating the chemical fact that the total energy of
a fullerene is not predictable [rom that of the = electrons alone. Correlation of A, with
chemical quantities is thus not inevitable, and apparent correlations may be artefacts of
other factors, but it is worth further exploration as part of the general search for more
detailed understanding of the relationship between structure and spectra.

The extrema of A, within the subset of IPR isomers (Table 2 and Figure 7b) show a similar
pattern to that for the general set, in that again the isomer of minimum smallest eigenvalue
usually occurs early in the IPR spiral list, and the isomer of maximum smallest cigenvalue
tends to occur late. Here, of course, all isomers have ny = 0, and the explanation of the
trend would have to be sought in more detailed consideration of properties of the graph,
perhaps in the hexagon-neighbour signature (6].
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Figure 7: Extreme values of the smallest adjacency eigenvalue plotted against the number
of vertices for the fullerene graphs (a) in the complete set of general fullerenes Cag to Cigo,
(b) the complete set of isolated-pentagon fullerenes Cgo to Cgo.
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Figure 8: Scatterplot of the absolute value of the smallest adjacency eigenvalue against
the number of pentagon adjacencies for (a) the 1812 isomers of Cgo, (b) the 8149 isomers
of Cro. The two open circles at n, = 0 denote the unique Cgo and Crg isolated-pentagon
isomers and the two at n, = 20, denote the unique hemi-dodecahedrally capped cylindrical
isomers.
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n max Ay, [somer np min A, Isomer | n,
20 | -2.236068 | 1/1 30 -2.236068 | 1 30
24 | -2.414214 | 1/1 24 -2.414214 | 1 24
26 [ -2414214 | 1/1 21 -2.414214 | 1 21
28 | -2.414214 | 2/2 18 -2.524691 | 1 20
30 | -2.521832 | 3/3 17 -2.645751 | 1 20
32 | -2.513447 | 6/6 15 -2.629652 | 2 18
34 | -2.573159 | 5/6 14 -2.637939 | 1 17
36 | -2.585043 | 14/15 12 -2.705728 | 2 18
38 | -2.589475 | 16/17 12(11) | -2.732051 | 2 18
40 | -2.575743 | 39/40 10 -2.797933 | 1 20
42 | -2.646254 | 39/45 10 -2.756268 | 1 16
44 | -2.639857 | 73/89 12(9) | -2.801961 | 2 18
46 | -2.647517 | 99/116 8 -2.795500 | 1 16
48 | -2.650113 | 171/199 7 -2.833649 | 2 18
50 | -2.657091 | 264/271 6(5) -2.869855 | 1 20
52 | -2.672404 | 422/437 5 -2.858362 | 2 18
54 | -2.662571 | 540/580 4 -2.851571 | 1 16
56 | -2.691636 | 864/924 4 -2.879385 | 3 18
58 | -2.687044 | 571/1205 6(3) -2.871320 | 1 16
60 | -2.618034 | 1812/1812 0 -2.909313 | 1 20
62 | -2.707865 | 1982/2385 4(3) -2.902113 | 2 18
64 [ -2.707403 | 2983/3465 3(2) -2.906836 | 2 18
66 | -2.705324 | 4059/4478 4(2) -2.900987 | 1 16
68 | -2.704639 | 6073/6332 2 -2.918986 | 3 16
70 | -2.726981 | 8094/8149 1(0) -2.933236 | 1 20
72 | -2.717527 | 10611/11190 2(0) -2.926573 | 2 18
74 | -2.731567 | 14246/14246 0 -2.931852 | 2 18
76 | -2.701718 | 19151/19151 0 -2.934178 | 2 18
78 | -2.709956 | 24109/24109 0 -2.929473 | 1 16
80 | -2.699315 | 31924/31924 0 -2.948816 | 1 20
82 | -2.725371 | 39717/39718 0 -2.936288 | 1 16
84 | -2.737860 | 51587/51592 0 -2.946237 | 2 18
86 | -2.757238 | 63757/63761 0 -2.949856 | 2 18
88 | -2.761926 | 81737/81738 0 -2.951063 | 2 18
90 | -2.767001 | 99915/99918 0 -2.959522 | 1 20
92 | -2.766015 | 126409/126409' | 0 -2.956295 | 3 18
94 | -2.770599 | 153469/153493 | 0 -2.951747 | 1 16
96 | -2.771209 | 191815/191839 | 0 -2.958956 | 2 18
98 | -2.780413 | 230980/231017 | 0 -2.961571 | 2 18
|ﬂ0 -2.784995 | 285895/285014 | 0 -2.967192 | 1 20

Table 1: Maximum and minimum values of A, for general fullerenes in the range Cog-
Cioo. At each value of n are shown the maximum value of An, the isomer that achieves
it (denoted by a/b, where a is its position in the spiral order of the total of b isomers),
the value of n,, the number of pentagon adjacencies for that isomer (with the minimum
value for n, achievable at that value of n also shown in brackets), the minimum value of
An, the isomer achieving it, and the value of n,, for that isomer.
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n max An Isomer | min A, Isomer
60 | -2.618034 | 1/1 -2.618034 | 1
70 | -2.732051 | 1/1 -2.732051 | 1
72 | -2.746680 | 1/1 -2.746680 | 1
74 | -2.731567 | 1/1 -2.731567 | 1
76 | -2.701718 | 2/2 -2.754959 | 1
78 | -2.709936 | 5/5 -2.755980 | 4
80 | -2.699315 | 7/7 -2.801938 | 1
82 | -2.725371 | 8/9 -2.776052 | 1
84 | -2.737860 | 19/24 -2.799899 [ 1
86 | -2.757238 | 15/19 -2.792331 | 3
88 | -2.761926 | 34/35 -2.819541 | 1
90 | -2.767001 | 43/46 -2.847759 | 1
92 | -2.766015 | 86/86% | -2.834159 | 1
94 -2.770599 | 110/134 | -2.826574 | 3
96 | -2.771209 | 163/187 | -2.847306 | 1
98 | -2.780413 | 222/259 | -2.843414 | 66
100 | -2.784995 | 432/450 | -2.879385 | 1

Table 2. Maximum and minimum values of A, for isolated-pentagon fullerenes in the
range Cep-Cigo. At each value of n are shown the maximum value of An, the isomer that
achieves it {denoted by its position in the IPR spiral order a/b, in the total of b IPR
isomers), and then the equivalent data for minimum value of Aoy
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