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Abstract

A simple (non overlapping) region of the hexagonal tessellation of
the plane is uniquely determined by its boundary. This seems also to
be true for “regions” that curve around and have a simple overlap.
However, Guo, Hansen and Zheng [3] constructed a pair of non iso-
morphic (self-overlapping) regions of the hexagonal tessellation which
have the same boundary. These regions overlapped themselves several
times. In this paper we prove that any region not uniquely determined
by its boundary must cover some point three or more times.

Benzenoid hydrocarbons or polyhexes have been studied extensively and a
rich variety of mathematical questions have arisen in the course of investi-
gating these structures. There are several different methods for coding the
boundary of a polyhex, as cyclic sequences of numbers. Independent of the
coding method, it is natural to ask the following two questions. Which se-
quences are the boundary codes of some polyhex and, and for those that are,
do they uniquely determine that polyhex? This paper is concerned with the
second question. This second question was answered in the negative by Guo,
Hansen and Zheng [3]. Their result then leads to the problem of deciding
whether or not the boundary sequence of a given polyhex uniquely deter-
mines that polyhex. In this paper, we show that, if the natural projection
of the polyhex into the hexagonal tessellation of the plane does not tripie
cover some point, then the polyhex is uniquely determined by its boundary
sequence.

These questions about polyhexes were actually considered in a broader con-
text in [1]. In that paper. Brinkmann, Friedrichs and Nathusius introduced



190

the term (m, k)-patch; in this paper, we expand their definition slightly. Let
m and k be integers greater than 2. By an (m, k)-patch, we mean a con-
nected, plane graph I’ with a distinguished face A whose boundary vertices
have been indexed counterclockwise around that face by the integers 1,...,n
and a sequence of non negative integers ry,..., 7, such that the following
conditions hold:

s all faces, other than A, are k-gons;

o for each vertex v, p(v) + ng:; ry, = m, where p(v) is the degree of v
and 7; ...1, is the complete list of boundary indices assigned to v;

¢ all articulation vertices (cut vertices) lie on the boundary of A.

Note that, if v does not lie on the boundary of A, the list of boundary indices
assigned to it is empty and p(v) = m. Note further that, if a boundary vertex
v is assigned only one index, say %, then r; = m — p(v). Finally, note that
a boundary vertex is assigned more than one index if and only if it is an
articulation vertex. Thus, the values of the boundary sequence ry,...,m,
are redundant bits of information, except at the articulation vertices of the
patch.

Griinbaum and Shephard (2] showed that, for any m, k > 2, there is a unique
finite or infinite, one ended, edge-transitive plane graph with all vertex va-
lences equal to m and all face valences equal to k. We denote this graph by
Agmgy- When ({22423 _ 9y < A, 4 is one of the Platonic graphs and,
when (Sm—'?%(-ﬂ —2) 20, Agm is infinite. By a drawing of an (m, k)-patch
P=(T,A,r,...,ry), we mean a graph homomorphism ¢ : T — A4 that
is a local graph isomorphism (one to one on vertex neighborhoods) and sat-
isfies the following condition: let z; denote the image under ¢ of the vertex
on A indexed by #; then, for each index i, 7; is the number of edges of A k),
with end point z;, between the edges (z:—1,z;) and (2, £i41) in the clock-
wise direction. All parts of this first theorem were proved by Brinkmann,
Friedrichs and Nathusius (1] for (m, k)-patches as they defined them. Their
proofs easily extend to the more general patches we have defined. However,
for the sake of completeness, we reprove their results here.

Theorem 1 Let P = (I, A,ry,...,7,) be an (m,k)-patch. Then
i. P has a drawing in Ay ).
ii. That drawing is unique up to an automorphism of Agm k-

11, Furthermore, the image of A is uniquely determined up to an automor-
phism of An ) by the boundary sequence alone.

w. Finally,

m—2 (m —2)(k-2)
P

where fi. 1s the number of k-covalent faces of T'.

rit..otra={

2)fe,
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PRrOOF: We proceed by induction on the number of edges in I'. The conclu-
sions are easily checked for the trivial patch consisting of a single edge.

Assume then that I has al least two edges. Suppose first that " is a tree and
that the vertex with index i is a pendant vertex. Let IV denote the graph
obtained by deleting this vertex and its attaching edge. eliminate the indices
i and i + 1 and then reduce each boundary vertex index by 2 from 2 + 2 on.
Define 1} = r;, for j = 1,...,4 = 2; define r{_; = i) + i1 + 1 and deﬁne
T =Tjya, for j =14,...,n— 2. One easily sees that P' = (D, AL ey Thes)
is also an (m, k)-patch. By the induction hypothesis, the four conclusions
hold for P’. And, since the pendant vertex can be reattached in just one
way and be consistent with the boundary sequence 7y, ..., r,, the first three
conclusions hold for P as well. Since neither I" nor ' have any k-faces, we
have:

[“T“Q)(n—2)+m=ri+.,.+r;n_2) =r+...trptlor=r+. +ratl-(m-1)

Hence r+...+15 = (B52)(n—2) +m+(m~2) = (%52)(n)+m, as required.

Now suppose that ' is not a tree. Then there is an edge in the boundary
of A that also bounds a k-face. Select and fix such an edge and k-face. Let
¢ and i + 1 be the indices of the selected edge. Let I denote the graph
obtained by deleting this edge. A’ is now the union of A and the selected k-
face. We must insert indices for the vertices around the inside of the deleted
k-face and adjust the boundary sequence: define rj =r;, forj=1,...,i—1;
ri=ritLiri=0forj=i4+1, it k=2 i =T H 1T = Tk,
forj=1i+k,...,n+k— 2. One easily sees that P’ = (I", A", v}, ..., 70, )
is an (m, k)-patch.

Again, by the induction hypothesis, the four conclusions hold for P'. Con-
sider a drawing of P and note that, since r_f,- =0forj=i+1,...,i+k-2
the images in Ay k) of the vertices indexed 4,...,i+ k — 1 are the vertices
of a face. Hence the edge joining the images of the vertices indexed ¢ and
i+ k—1 may be added to get the required drawing of P and it easily follows
that the first three conclusions hold for P. Since one k-covalent face has been
eliminated, we have f = fx — 1. Thus

ottt = (B k- 2) 4 mo+ (2FED gy ),
We also have

™ +...+r:|+k42=r[ +...+71n+2.
Hence:

it A= (%)(n+k—2>+m+<w§ﬂ - 2)(fi-1) -

= (25 +m + (CED _9)f,

as required.0

We will have need of the following corollary later.

Corollary 1 IfP = (I, A,1y,...,1,) and P' = (I, A", 7|, ..., 7},) ere (m, k)-
patches with i =7; fori=1,...,(n— 1), then v, = ry.

Proo¥: Consider drawings of both P and P’. Since r{ = r;, we may assume
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that the images of the vertices indexed n, 1 and 2 coincide. But then, by
Part (iii) of the theorem the images of the vertices indexed 1 coincide, for all
i. It follows that r), = r,.0

Figure 1:

A simple (non overlapping) region of Ay, ) is uniquely determined by its
boundary. Thus, if the drawing of an (m, k)-patch is one to one, then the
patch is uniquely determined by its boundary sequence. This seems also to
be true if the drawing of the patch curves around and has a simpie overlap. It
is natural to ask if every (m, k)-patch is uniquely determined by its boundary
sequence. That the answer to this question is “no” was demonstrated by Guo,
Hansen and Zheng (3] with their construction of two non-isomorphic (3,6)-
patches having the same boundary sequence. In Figure 1, we have drawn
a triangulated version (two (6,3)-patches) of their example. One feature of
this example is that, when drawn in Agm k), Lhe image has a double overlap;
that is, some point of Ay, is covered three times. The main result of this
paper is that this is true of all such examples.

A sequence 7y,...,7, is an (m,k)-boundary sequence if there is an (m, k)-
patch with it as boundary sequence. An (m, k)-boundary sequence ry,...,7,
is said to be ambiguous if there exist two (m, k)-patches, with that bound-
ary sequence, that admit no isomorphism preserving the boundary sequence.
Note, if there exist two (m, k)-patches with the same boundary sequence that
admit no isomorphism preserving boundary sequence, then, by adding one
more k-face, we can construct two (m, k)-patches with the same boundary
sequence which admit no isomorphism whatsoever. The Guo-Hansen- Zheng
example was constructed this way. If the lower left hand hexagons are re-
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moved from both of the patches in Figure 1 and the resulting patches have
their boundary vertices indexed clockwise starting from the lower left, then
the two patches are isomorphic but there is no isomorphism that preserves
the boundary sequence. Once the hexagon is replaced, the patches are no
longer isomorphic.

Theorem 2 Let P = ([, A, 1y, ...,7n) be an (m, k)-patch unth (W -
2) > 0 and with an ambiguous boundary sequence. Let ¢ be any drawing of
P. Then there exist three distinct vertices of T' that are mapped by ¢ onto
the same vertex in Ay ).

PROOF: Let P; = (I';, Ay, 7r1,...,Ta), for = 1,2 be two (m, k)-patches with
the same boundary sequence and assume that they admit no isomorphism
which preserves the boundary indices. Let ¢;, i = 1,2 be drawings of these
two patches. We wish to show that each of these drawings triple covers some
point in its image. Proceeding by induction on the number of edges in the
patch, we note that result holds vacuously for all patches with a small number
of edges.

Suppose that I" has a pendant vertex. Note that the vertex with index i is
a pendant vertex if and only if r; = m — 1. Thus any pendant vertex in
one of the patches corresponds to a pendant vertex in the other. Removing
these pendant vertices simultaneously results in a smaller pair of patches with
identical boundary sequences. Furthermore, any boundary index preserving
isomorphism between the smaller patches extends to a boundary index pre-
serving isomorphism between the original patches. Thus, by the induction
hypothesis, each of the induced drawings of these smaller patches cover some
point of Ay three times. Hence the original drawings cover some point of
A¢mx) three times.

Next suppose that the boundary edge between the vertices indexed 7 and i+1
bounds a k-face in both patches. Then removing that edge and reindexing (as
described above) results in a smaller pair of patches with identical boundary
sequences. Again, any boundary index preserving isomorphism between the
smaller patches extends to a boundary index preserving isomorphism between
the original patches and, invoking the induction hypothesis, we conclude that
each of the original patches covers some point of A¢y,x) three times.

Now suppose that there are two boundary indices that, in each patch, index
the same articulation vertex. Without loss of generality we assume these
indices are 1 and 7. It follows that a boundary vertex of I' indexed by
7 €{2,...,1—1} and a boundary vertex with index in {i + 1,...,n} must
lie in different lobes of I". Thus, the subgraph of I" obtained by deleting all
lobes containing a boundary vertex indexed by {¢ +1,...,n} (but retaining
the articulation vertex), yields a smaller patch with its distinguished face
bounded by the portion of boundary of A with vertices indexed by {1,...,i-
1} and with #,75.. 7., as boundary sequence where 7, represents the
appropriate adjustment at the articulation vertex. Clearly then, each patch
consists of two smaller patches joined at the specified articulation vertex.
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Consider the smaller patches with boundary indexed by 1,...,i— 1. Clearly
their boundary sequences match for the vertices indexed 2, ...,i—1; that they
also agree at 1 follows from Corollary 1. The same will be true for the other
pair of smaller patches. Boundary index preserving isomorphisms between
corresponding smaller patches combine to give a boundary index preserving
isomorphism between the original patches. Hence, at least one of the pairs of
smaller patches are non isomorphic and have a common ambiguous boundary
sequence. EKach of these and, thus, each of the original patches covers some
point of A¢mky at least three times.

Thus, we may assume that our patches have no pendant vertices, no articu-
lation vertices with corresponding indices and that the boundaries have no
corresponding edges that bound k-faces in both patches. We have reduced
the pair of patches in Figure 1 by simultaneously throwing out correspond-
ing boundary edges that bound k-faces in both patches and corresponding
pendant vertices and attaching edges. The resulting reduced patches are in-
dicated by the heavy edges in Figure 1 and are redrawn in Figure 2. We say
that an edge of the boundary of a patch is a face edge if it bounds some k-face
otherwise we say that it is a path edge. A key feature of these reduced patches
is that, if e is a face edge in one of the patches, then the corresponding edge
in the other patch must be a path edge.

=3, rag=3

ra3=3

r14=12

ra=1)yrap=2 rig=2)Tas=1
ra=2 reo=1 rr=2)g"6=2
ra=3 ra=3 risg=1jpr2r=3
=3 ra=3 $ray=3

Figure 2:

The lobes (maximal 2-connected subgraphs) of these reduced patches are ei-
ther single edges or small 2-connected patches. Since these reduced patches
have no pendant vertices, some of the small 2-connected subpatches must be
“pendant”, that is, be attached to the rest of the graph by a single articula-
tion vertex.
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We now proceed to prove that any drawing of Py triple covers some point; by
symmetry the result will then hold for Py as well. Suppose that some triple
of indices, h, 1 and j correspond to a single articulation vertex in P,. Since
no two of A, ¢ and j can correspond to the same articulation vertex in P,
they must correspond to three distinct vertices in P,. But any drawing of
P, must map these three vertices onto the same vertex of Ay, g, the image
of the corresponding single vertex of I%. We assume then that P, admits no
articulation vertex common to three or more lobes.

Let 1 and 7 denote the two indices of an articulation vertex u of P; attaching
one of its pendant patches. We have indicated such a pair in Figure 3; and
we will continue to track the steps of the proof in that figure. Without loss
of generality, we may assume that the edges of the boundary segment of A,
with indices 1,...,7 are the boundary edges of this pendant patch. Since
they are face edges in P, the corresponding edges in Py must be path edges.
In view of the previous paragraph, 1,...,17 are the indices on one side of an
elementary path in P, such that the vertices with indices 2,...,7i — 1 have
degree 2. If 7 + 1 is the index from the other side of the vertex indexed 1,
then the indices j+1, ..., 7+1 are the indices on the other side of that path.
Because of Part (iii) of Theorem 1, the drawings of the boundaries of both
Py and P, match up and vertices having indices 1 and 4 in either patch, must
be mapped onto the same vertex in Agy, k).

Py

Py

Figure 3:

Let v denote the vertex of P, with index j + 1 and let w denote the vertex of
Py with index ¢ + j. By the argument just employed u, v and w must all be
mapped onto the same vertex in Ag, ). We must show that they are indeed
distinct vertices of I'y. If u = v, then there would be a pair of articulation
vertices with the same indices 7 and j in both patches; a possibility already
eliminated. Hence u # v and by the same argument u # w. All that
remains is to show that v # w. We conclude the proof by showing that the
assumption, v = w, leads to a contradiction.

Considering the pendant patch of P attached at u, we have, by Part (iv) of
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Theorem 1, that
m-—2\ .
Tod T by = (—2-) (i=1)+m+cfy,
where 7, is the boundary index of u for this small patch, ¢ = (!m_—%ﬂc;l) -2
and f, is the number of faces in this small patch. Since ¢fy, > 0 and r, < m,

m-—2
o Tl > ( 5 )(’i—l).
Now v = w only if the edges of P, with vertex indices 7+ 1,...,7 + ¢ enclose
a small patch too. In that case, the same arguments give:

_2) =1},

o+ ...+ Tisi+Tja+ ...+ T > (m—2)(i—1).

m
Tivz + .o+ Tipic1 >

Adding these two inequalities gives

However, as we have already noted, the vertices along this path in P, all have

valence 2. Thus, for h = 2,...,1— 1, we have 2 + r + 745410 = ™ giving
the contradictory equality:
Tttt T = (m - 2)(i - 2).0

As we noted above, the excluded cases, ((m_—’-!%(ﬂ} — 2) < 0, correspond
to patches that embed in one of the five Platonic maps. One of the key
observations in the above proof is that if a simple circuit encloses a finite area
in one patch it cannot enclose a finite area on “the other side” in the other
patch. This of course is not true when A(m ) is finite. Brinkmann, Friedrichs
and Nathusius [1] showed that there are no ambiguous (3, 3), (3,4) or (4, 3)-
patches. One can easily construct ambiguous (3, 5) and (5, 3)-patches similar
to the patches constructed by Guo, Hansen and Zheng [3]. Such patches do
cover some point three times. But, it remains open as to whether or not
ambiguous patches exist that wrap around the dodecahedron or icosahedron
in a special way covering no point more than twice. However, if such special
patches exist, they must be rather small: by the pigeonhole principle, a
(3,5)-patch with more than 24 pentagons or a (5, 3)-patch with more than 40
triangles must cover some point three or more times whether it is ambiguous
or not.
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