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ABSTRACT. Open-ended carbon nanotubes, like toroidal fullerenes, can and probably do
exist as fully hexagonal, graphite-like structures, but if two tubes are joined by cutting a hole
in the wall of one and joining it to the end of another, this is no longer possible, and inevitably
there will be at least two non-hexagonal rings. Here we explore some of the smaller and
simpler constructions using both graph theory and molecular mechanics to see the extent of
their deviations from graphitic objects, and suggest a possible way of encoding them. T-
junctions made from tubes with six hexagons round the circumference and with sides parallel

to their cylinder axes, could all be optimised into a plausible geometric representation.
INTRODUCTION

A nanotube is a cylinder of carbon atoms, normally arranged in a polyhex structure,
and in concept may be viewed as a rectangular sheet of graphite which has been rolled up, and
one pair of opposite sides glued seamlessly together. Thus, only at the ends of the cylinder
are there degree-2 vertices (or, equivalently, carbon atoms having a pendent hydrogen atom
available for substitution); all internal vertices are of degree 3, corresponding to trigonally
hybridised carbon atoms. These objects, together with fullerenes of varying topology, have
been the subject of much research in recent years [1-5], and one of their possible uses for the
future is as a new class of electrical conductors. They are plausible candidates for components

of what eventually might become the near ultimate ‘molecular-sized’ computers. For any
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complex circuitry, networks of tubes, and therefore junctions, may be needed. There have
been a number of studies of nanotube junctions although most are concerned with the end-to-
end joining of two nanotubes in order to tailor the geometric or electrical properties of a
single ‘wire’. The practical preparation of junctions of three tubes in a “T” or “Y” shape
appears to be difficult, but it has been done. [6] Here it is not immediately obvious what is
structurally possible even from a theoretical point of view, and it is this question we explore
here. A practical chemist in need of a tubular glass T-piece, and not having one to hand,
might take two lengths of glass tubing, heat the side of one, blow a hole in it, and then fuse
its rim to one end of the other tube (see Figure 1.). In essence this is the process we have
modelled here. There is a problem, however. While the chemist, by careful annealing of the
artefact can make a T-Piece junction where the glass wall has exactly the same physical
properties anywhere on its surface, this is not the case for these nanotubes made from
networks. The surface of a straight nanotube is well suited to a graphite-like, all hexagon
structure, but a T-Junction necessarily has some non-hexagonal rings where a tube end joins a
larger hole. The structure networks we deal with here are entirely hexagonal except for this
annulus of rings that forms the collar where the two tubes join. In this paper we do not

attempt any extensive enumeration, but we discuss the variables, and show a few examples.
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FIGURE 1. Schematic view of T-Junction construction from two
Cylinders: A, having a hole in its side, and B.
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STRUCTURAL FEATURES

The characterization of these species can be considered from two viewpoints. For
fully comprehensive knowledge of course, all connectional information is needed, and so the
dimensions of the tubes must be known: the orientation of the hexagons; how the tubes are
joined together to form a T-Junction; whether the T-Junction is open ended or part of some
larger structure, and so on. For many purposes, however, we need to concentrate on the
purely local features of the junction, and to consider features common to any particular
environment. This is the main objective here, so that topologically we are concerned simply
with joining a cylindrical network to a hole in a hexagon lattice. Although object A in Figure
1 is shown as a cylinder, and this ts used for the examples constructed, it could equally well
be any other polyhex network such as a torus, a graphite sheet (some pictures of these have

been published [7]), or an all-hexagon region of a conventional spherical fullerene.

The annulus

This circular band of rings that connects the surface of one of the original cylinders to
that of the other, is where all the non-hexagonal rings occur in the class of structures
considered here. Some, but not all, of these may be hexagons, and clearly the distribution of
rings and their sizes depend on the nature of both the cycle that forms the end of one cylinder,

and the cycle that forms the boundary of the side-hole in the other cylinder.

The junction components that by interconnection form the annulus

In the simplest case the cylinder whose end is joined to the hole (cylinder B in Figure
1), is one whose hexagons are aligned so that each has two sides parallel to the axis (referred
to as ‘anthracene type’), and whose ends are ‘cut square’ with no protruding hexagons. This
has alternating degree-2 and degree-3 vertices around each end. If the hexagon alignment is
rotated by 90 degrees to become perpendicular to the cylinder axis (referred to as
‘phenanthrene type’), then the pattern of degree-2 and degree-3 vertices is different, but the
ratio and the total numbers are unchanged. For other shapes, where there are protruding or
missing hexagons, both the numbers and sequence patterns of the vertices may change but,
nevertheless, the degree-2: degree-3 ratio stays the same (see Theorem 1). For the purpose of
making a T-Junction, the number of degree-2 vertices must, obviously, match that of the hole.

In the simplest case of an anthracene type cylinder with a minimum length boundary at the
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end, rotation of the cylinder relative to the hole has no effect. In all other cases the cffect of
such rotation must be checked for possible generation of new non-degenerate structures.

Because the boundary cycle at a cylinder end need not be at its minimum (i.e. the end
may not have a ‘straight cut’), the circumference, measured in hexagons, is only loosely
related to the number of free degree-2 vertices, and in any case, within wide limits the
cylinder sizes are not required to match. It is the side-hole of one and the end of the other that
must be compatible, and the circumference of cylinder B, whose end is attached (Figure 1)
can be much greater than that of cylinder A if the hole in A is narrow, slit-like and aligned
diagonally or along the axis.

A benzenoid cylinder with a hole (A in Figure 1) can be viewed simply as a once-
folded & glued coronoid whose outer boundary is rectangular. Both benzenoids(8, 9] and
coronoids[10] are quite well characterized objects. To illustrate a few examples we have used
the systematic tables given by Knop et al.,[11] who list smaller benzenoids using a three-
integer code h.ij where h is the number of hexagons,  the number of internal vertices and j is
a sequential reference number generated by their algorithm. By identifying benzenoid
patches on the cylinder side, and then deleting vertices and edges internal to the patch, one
may generate coronoid holes systematically; Table I shows some examples, and each will
generate a different isomer. If the hole (see Figure 1A) lacks full rotational symmetry, then
its orientation relative to Cylinder B is important. Orientation of the hole can also vary with
respect to the axis of Cylinder A, and the possibilities are of course affected by whether
Cylinder A is of anthracene- or phenanthrene-type.  The position of the hole on cylinder A
needs to be specified too. If Cylinder A is closed to a torus then neither position nor
orientation of the second type (hole on A relative to axis of A) has connectional significance,

although the ease of physical realisation may vary.

CONSTRUCTION
A useful property of the annulus that contains non-hexagonal rings, somewhat
reminiscent of the Euler closure rule for polygons, is that its size deviations from six, sum to

six, and a proof is given below.

Theorem 1: When the degree 2 vertices at one end of a cylindrical polyhex, are joined to

those around the inner boundary of a suitably sized coronoid, by connecting degree 2 vertices
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Table 1. Coronoid holes formed from polyhexes with up to seven hexagons, to which a
polyhex cylinder can be attached. A: The number of attachment points (degree 2 vertices), c,
required; B: solutions for A,i (=hexagons, internal vertices) of the equation 2h-2-i = ¢ that
exist as distinct coronoid holes; C: reference codes of the corresponding polyhexes; D: the
shapes of the holes, i.e. the polyhexes of column C with their internal vertices and incident
edges deleted.

A B C D A B ¢ D

3 3,1 311 & 6 64 6.4.3 d::?
4 30 3.01 d? 6 76 76.1 {:}
4 30 302 (CT0O 751 5.1.1 6}5
4 42 421 l{:b 7 51 542 &
5 53 53,1 & 7 51 5.1.3

5 41 411 Ej 7 51 5.1.4

6 40 40.1 83 7 51 5.1.5 Q

6 40 402 w 7 51 5.1.6 E j

6 40 4.03 (j 7 63 6.3.1 E:

6 40 4-0-4 E) 7 63 6.3.2 g
6 40 405 CTT0) 71 63 633 i}
6 52 521 8 7 63 6.3.4 CC:’I)
6 52 522 g 7 15 7.5.1 CJ\:P
6 52 523 C\{:P T A 7.5.2

6 64 64.1 (:’} 7 15 753

6 64 642 (Cj) 7 B 8.7.1 {::\5
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one-to-one from each, then for the annulus of new rings formed, the sum of the deviations

from six of each ring size itself equates to six, i.e.
Z (Annulus ring size-6) = 6 (1)

Proof: Consider some benzenoid B and a benzenoid patch B* within it. The size and shape of
B is immaterial provided B* is entirely surrounded by hexagons. For B* let 4 be the number
of hexagons, v the number of peripheral vertices, and v; the number of vertices of degree 3.
The number of these on the perimeter of B* will be vi-i where i is the number of internal
vertices. These peripheral vertices of degree 3 become those of degree 2 (v;) within the
coronoid hole formed by deletion from B of the i vertices and their incident edges that are
internal to B¥.

v2 (coronoid) = vi-i (benzenoid) = 2h-2-i (2)

v (coronoid) = v (benzenoid) = 4h+2-2i 3)

These results are given by Cyvin et al[10], and are implicit in Gutman et al.[8]

We consider now the cylinder that is to be connected to the hole, and first take the
special case of the anthracene type where the all the degree 2 vertices at one end lie on a plane
perpendicular to the axis. There will be v, degree 2 vertices (by definition) plus an equal
number of degree 3 vertices evenly interspersed, i.e. the vertex degree sequence around the
cylinder end will be 2,3,2,3,2,3.... With the alternative arrangement for the hexagons
(phenanthrene type) the degree sequence is 2,3,3,2,2,3,3,2,2... Again there are equal numbers
of degree 2 and degree 3. Finally there is the case where the degree 2 vertices are not all in a
plane perpendicular to the axis, because the cylinder end has protruding or missing hexagons.
Figure 2 shows all the addition modes for adding hexagons to a polyhex, which indicates that
although the number of degree 2 vertices for a given cylinder varies with the shape of the end,
the ratio of degree 2 to degree 3 vertices does not. It follows that
v (cylinder) = 2v, (4)

Now the total boundary of the annulus will be formed by all vertices around the coronoid hole
(4h+2-2i) plus all vertices around the end of the polyhex cylinder (2v;), but of this total, v,
pairs of vertices are shared between two rings. [t follows that

Z (Annulus ring size) = 4h+2-2i + 4v; = 4h+2-2i+ 4(2h-2-i) = 12h-6-6i. (5)

The ring size sum for an annulus with the same number of hexagons is
6 v; = 6(2h-2-i) = 12h-12 -6i, and the result follows.
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FIGURE 2. Modes for adding one hexagon to a polyhex. The effects on the
numbers of degree 2 and degree 3 vertices (v2 and v;) are to (a) a fissure: + 1,+1
(b) a bay: no change (c) a cove:-1,-1 (d) a fjord: -2,-2 (e) a promontory, +2,+2.

[t should be noted that Theorem 1 provides a simple numerical check on the sizes of
additional rings or faces formed. It does not imply that all ring patterns from a given cylinder
are the same; they are not.

As an example, junctions derived from 6-hexagon circumference cylinders of
anthracene type were constructed. Table 1 shows that there are twelve coronoid holes that
meet the requirement of six degree 2 vertices on the inner boundary, and the use of these
when joined to ‘square-cut’ cylinders of the same type is shown in Table 2.  All the
examples were constructed using HyperChem [12] and could be optimised to a plausible
geometry using HyperChem’s molecular mechanics geometry optimisation facility, although
in many cases, unless the starting geometry was chosen carefully, the final structure settled
into an unrealistic and locally non-planar structure. The ease with which a nice structure
could be obtained appeared to bear no relation to the hole shape and resultant ring pattern.
For reliability it was found best to conduct the optimisation in stages - i.e. to construct and
optimise the two cylinders, then assemble them with the hole and a cylinder end in reasonable
spatial proximity, connect them, and finally, re-optimise the whole.

In so far as such models give any guide to physical reality, it is noteworthy that

although there were slight variations, most structures did optimise as “T” rather than “Y”
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structures. The exceptions were junctions made from the hole 4-0-2, where the concerted
effect of two pairs each of 9, 7 and 5-membered rings bends and narrows one of the tubes, and
the simple polyacene hole 4-0-5. In this case an even “Y” structure forms, whose only
deviation from all-hexagon coverage is two nine-membered rings lying either side of the
junction in planes parallel to the three tubular arms. In general it can be expected that
geometry will vary even less with larger structures, as non-hexagons become a smaller part of

the whole. Further studies are in progress.
THE ENCODING OF T-JUNCTIONS

In the preceding section it was shown that a simple maximized clockwise circular
string of ring sizes contained within the annulus, together with a code for the coronoid hole,
suffices to encode a junction where the joined cylinder is of anthracene type, and has a
minimal boundary at the connected end. To encompass other types of cylinder however —
phenanthrene type or those that have a non-minimal boundary — more information is needed.
A suggested more general form of the code uses ring sizes in the same way, but intersperses
them with the numbers of vertices that are of degree 3 on the cylinder end (or, equivalently,
are degree 2 on the inner perimeter of the annulus). Thus, for example, the code for a
junction from a simple anthracene type with the 4-0-5 hole, shown in Table 2 as 966966,
becomes 9-1-6-1-6-1-9-1-6-1-6-1, showing that each ring of the annulus contains one degree
3 vertex on the inner side. In Table 2 this amounts to scoring one for each of the indentations
of the inner star. More complicated arrangements can now be dealt with. For example a
simple phenanthrene type cylinder, instead of the vertex degree sequence (2,3,2,3,2,3...), has
(2,2,3,3,2,2...) on its ends. Using this with hole 4-0-5 would give the code 10-2-5-0-7-2-8-0-
7-2-5-0, and again there is only one isomer here because of the symmetry of both
components, but if we join the same cylinder to the hole 4-0-4, two distinct isomers may be
obtained: 10-2-6-0-7-2-8-0-7-2-4-0 and 10-2-5-0-6-2-8-0-8-2-5-0. More complicated
cylinder ends may be dealt with by similar means. If required, the circumference of cylinder
B, its type and its end shape can all be reconstructed from these code values. So also,
although somewhat more laboriously, can the original hole in cylinder A. The lengths,

however, remain unspecified



[able 2. T-Junction construction from polyhex tubing of six hexagons circumference with
each hexagon having two sides parallel to the axis (anthracene type). The cylinders used are
all 12 hexagons deep. For each example is shown, clockwise from upper left: (i) the code[11]
for the polyhex used to generate a hole, a string of the annulus ring sizes generated (as the
highest clockwise lexicographic value) and in parentheses the minimized energy afier
molecular mechanics optimisation; (ii) the annulus formed by attaching the cylinder end
(represented by a six point star) to the hole; (iii) the shape of the corresponding polyhex hole
before attachment, and (iv), an image of the result generated by HyperChem [12]
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CONCLUSIONS
A T-junction made from polyhex tubes must contain at least two non-hexagonal rings. In the
class of structure considered here, where all deviations from hexagonality occur within the

annulus formed when a polyhex tube is joined to a hole in the surface of another polyhex tube
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the tubes join, the deviations sum to six, providing a useful computational check. The local
structure of such a junction can conveniently be characterized as a maximized string of
annulus ring sizes interspersed with the numbers of degree 3 vertices on the attached cylinder
end. Additionally, a code for the hole is helpful but not essential. A set of twelve junctions
that require six connections between the tubes all gave pictures showing a plausible geometry

under a molecular mechanics optimisation.
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