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Abstract

‘We describe two algorithms for the construction of simple planar cubic 3-connected
graphs with all face sizes in some specified set; equivalently, simple triangulations of
the plane with all vertex degrees in a specified set. Output of non-isomorphic graphs
is achieved without explicit isomorphism testing. We also give some results obtained
using the algorithms, including the numbers of fullerenes up to 200 vertices, and
verification of a famous conjecture of Barnette up to 250 vertices.
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Introduction

The degree deg(f) of a face f in a simple planar 3-connected cubic graph embedded in the
plane is the number of edges in its boundary. It equals the degree of the corresponding



164

vertex in the dual graph - in this case a simple triangulation of the sphere. We will use
the word map to denote a graph embedded in the plane (equivalently the sphere; the
infinite face is not regarded as special), and will always assume the absence of multiple
edges and loops whether we use the adjective simple or not.

Many problems in mathematics and chemistry (see e.g. [2, 3,7, 9, 11, 12]) deal with maps
of constant vertex degree where certain face degrees are permitted or forbidden. That is,
there is aset S = {fy,..., fk} € N such that all face degrees are required to be in S. For
example, the well-known fullerenes (see [10]) can be defined as cubic planar maps whose
faces are all pentagons or hexagons (S = {5,6}). We will restrict ourselves to what is
probably the most important case here, namely cubic maps. Let us refer to planar cubic
maps with all face sizes in S as S-maps, and their dual triangulations as S-triangulations.
In order to check conjectures for given S up to maps of a certain size or determine the
energetically best molecule corresponding to an S-map with a given number of vertices
(atoms), it is useful to have complete lists of all non-isomorphic S-maps for the number
of vertices in question available.

Unfortunately, the construction of S-maps is a very difficult task if 5 is very small. The
best known solution so far is given in [5]. The algorithms described there use a database
of patches containing only faces with sizes in S and try to assemble cubic or quartic maps
from them. Unfortunately no necessary and sufficient criteria are known to determine
which patches occur in maps of a given order and which do not. The algorithm described in
(5] is focused on the most difficult case: that where few face sizes are allowed. The number
of non-isomorphic structures generated per second is low compared to generators for easier
classes. If many face sizes are allowed, the approach is inefficient and unfortunately it
also requires a lot of memory for the database of patches.

The plantri program, see [6], can list planar triangulations or their duals, that is cu-
bic 3-connected planar maps, very efficiently (several hundred thousand non-isomorphic
structures per second). It also contains special construction routines for the important
triangulation classes where 3-gons are forbidden, 3-gons and 4-gons are forbidden, or all
odd-degree faces are forbidden.

In the case where S matches one of these built-in classes apart from a small number of
additional forbidden face degrees, good performance can be obtained by simply filtering
from the output those maps having a face of forbidden degree.

In this article we present a method based on plantri’s code for generating all triangulations
which is often much better than output filtering when S is not of the form just described.
This program is called plantri_ad and can be obtained together with plantri. It works by
pruning the internal search process used by plantri to reduce the number of intermediate
graphs that cannot lead to an output with the desired face sizes. In principle a similar
method could be used together with the other construction methods employed by plantri
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(of which we mentioned some above) but that is a task for a later paper.

Plantri basics

Plantri (6] is a computer program to constructively enumerate planar triangulations and
other classes of planar graphs. The present version of plantri_ad uses the plantri code for
generating 3-connected planar triangulations. This uses a method going back to Eberhard,
Steinitz and Rademacher in [8] and [14]. Starting from an embedding of K}, the following
three operations are recursively applied.
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Figure 1:
The construction operations

At every step a new vertex of degree 3 is inserted into a face (operation Oj), a vertex
of degree 4 is inserted into the quadrangle obtained by deleting an edge (O4) or a vertex
of degree 5 is inserted into the pentagon obtained by deleting two edges on the same
face (Os).

Of course most triangulations can be constructed (up to isomorphism) by many different
sequences of these operations, so isomorph rejection methods have to be applied if we
don’t want isomorphic outputs. We use the canonical construction path method described
in [13]. In this method there is a rooted search tree whose nodes are triangulations. Each
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node is either accepted or rejected. The root of the tree is the starting graph Iy, which
is accepted. Recursively, rejected triangulations or triangulations of the desired output
size have no children in the search tree. Accepted triangulations smaller than the output
size have as children all the triangulations which can be formed by applying one of the
operations O3-0s. These children may be either accepted or rejected. These definitions
imply that the accepted triangulations form a connected subtree of the search tree; that
is, all the ancestors of an accepted triangulation are also accepted.

The exact criteria for accepting or rejecting each triangulation are not important for our
present purposes. However, we note two important implications of the criteria. First,
there is exactly one accepted triangulation in each isomorphism class of simple planar
triangulations of the output size. Second, a child formed by operation Oy, is always
rejected if it doesn’t have minimum degree m (but the converse is not necessarily true).

Of course an efficient implementation will attempt to not construct children which will
anyway be rejected. A brief summary of the approach taken by plantri_ad is that it also

tries to not construct children which cannot have accepted descendants in the desired
output class.

Applying degree restrictions

We are considering the generation of planar triangulations with n vertices, all vertex
degrees being in S, for some S C N that will remain constant throughout this section.
For k € N, a vertex of degree k will be called a k-vertex and the number of k-vertices in
a graph G will be denoted by n,(G).

The following observations will be used repeatedly in this section. Note that the trian-
gulation resulting from an operation O, is regarded as having the same vertex set as its
parent, except for one new vertex (chosen to be the obvious one).

Lemma 1 Given a triangulation G = (V, E), and an accepted child G' of G constructed
by an operation O, 3 < m <5, the following hold.

(1) If m #5, then Vv € V we have degg(v) < degg (v).

(2) If m =5, then Vv € V we have degg(v) — 1 < dege (v), with equality holding for
ezactly one vertezv € V.

(3) If m+# 4 and G # K,, then n3(G) < n3(G').

(4) If m = 4 and G # Ky, then ny(G) — 2 < n3(G’), with equality holding only if
n3(G) = 2 and the two 3-vertices are in adjacent faces.
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Proof: Claims (1), (2) and (4) are obvious from the operations. Claim (3) is true in the
case m = b because the fact that i’ is accepted means its minimum degree is 5 and
hence that the minimum degree of G is at least 4. Thus n3(G) = ny(G') = 0 in
that case. For claim (3) in the case m = 3, note that a triangulation that is not K
cannot have two vertices of degree 3 on the same face; hence O3, which adds a new
vertex of degree 3, can increase the degree of at most one vertex from 3 to 4. MW

Definition 1 If G # K, is a triangulation such that n3(G) > 3, or n3(G) = 2 and the
two 3-vertices are not in adjacent faces, then G is called an only-Os-graph.

The following corollary gives us a first bounding criterion for the case that 3 € S: an only-
Oj-graph can be discarded without losing any S-triangulations because all of its accepted
descendants have a vertex of degree 3.

Corollary 1 If G is an only-Oj-graph, then only children made using O3 can be accepted,
and those accepted children are also only-Oy-graphs.

Proof: Suppose that G' is the result of applying O3 to G. By (3), ns(G") > 2. If
n3(G") = 2 yet its two 3-vertices lie in adjacent faces, it is easy to see that n;(G) = 2
and its two 3-vertices also lay in adjacent faces (contradicting the assumption that
G is an only-O3-graph). Hence, by induction, all the descendants of G formed using
only Oj are only-Oj-graphs.

A child of an only-O3-graph formed using Oy will be rejected by (4), while one
formed using Os will be rejected because its minimum degree is less than 5. B

The next lemma gives a second criterion that can detect some additional triangulations
without accepted descendants that are S-triangulations in the case that 3,4 ¢ S. Define
534(G) = 2n3(G) + n4(G). If a triangulation has ny vertices and we want to construct
triangulations on n vertices without vertices of degree 3 or 4, then G can be discarded if
33.4(6) >n-—ng+1.

Lemma 2 Let G be a triangulation and let G' be an accepted child of G constructed
using Op,. If m € {3,4} or 534(G) > 2, then s34(G") > s34(G) - 1.

Proof: This is obvious from the operations. |

In the following we will discuss bounding criteria that can be applied in a more gen-
eral context. The first is a consequence of Lemma 2. Define A = max$ and o(G) =
eV (G deglv)>a (deB(v) — A). (If S is infinite, A = co and o(G) = 0.)
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Lemma 3 If o(G) > 0 then, for every S-triangulation G' that is an accepted descendant
of G, we have |[V(G")| > [V(G)| + s34(G) — 2+ 0o(G).

Proof: Since o(G’) = 0, and since only s can decrease the value of o(G) (and only by
one, see Lemma 1(2)), we need at least o(G) operations Os. As long as s34(G) > 2,
no operation Os can give an accepted triangulation, so because of Lemma 2 at least
534(G) — 2 operations O3 or O4 must be performed before the first operation Os.
Since with every operation we get one new vertex, an accepted S-triangulation that
is a descendant of G must have at least |V(G")| > |V(G)| + 534(G) — 2 + o(G)
vertices. |

For only-O;-graphs it is easy to see that unless o(G) = 0 we need not construct any
descendants, or to be exact:

Lemma 4 If for an only-O3-graph G we have o(G) > 0, then no accepted descendant of
G will be an S-triangulation.

In fact this lemma is a special case of what follows.
Definition 2 For k € N,k > 3, define
er(k) = min({(k" — k) | ' € S, k' = k} U {o0}), and

e (k) = min({(k— k") | k' € S,k' 2 5,k" < k} U {o0}).

For some arbitrary = € R, which we will choose later depending on the case, define
deg_err, (k) = min(es(k), (1 + z)e, (k).
For a triangulation G and v € V(G), define
errs(G,v) = er(degg(v)), if G z's. an only-Os-graph
deg_err,(deg;(v)), otherwise,

and

errorg(G) = Z errz (G, v).
veG

Lemma 5 The following inequalities hold:

degerr,(k+1) > degerr, (k) -1 Vk > 3;
degerr,(k—1) > degerr,(k)—-(14+2z) Vk>6,z2>0.
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Proof: If deg_err,(k+ 1) = 0, then clearly deg_err (k) < eq(k) =1, so deg.err(k+1) >
deg err (k) — I in that case. On the other hand, if deg.err,(k +1) # 0, then
er(k +1) # 0, ek + 1) # 0. Furthermore, deg.err,(k + 1) = min(es{k + 1),
(L+z)e (k+1)) = min(e; (k) —1, (1 +x)e, (k) +(1+x)) = min(eq(k), (1+z)e (k) —1
= deg.err_ (k) — 1.

If degerr,(k — 1) = 0, then clearly deg-err,(k) < (1 + z)e;(k) = 1 + z (since
k > 6), so deg.err(k — 1) > degerr (k) — (1 + z) in that case. On the other
hand, if deg.err, (k — 1) # 0, then et(k — 1) # 0, e;(k — 1) # 0. Furthermore,
deg_err,(k — 1) = min(er(k — 1), (1 + z)ey(k — 1)) > min(er(k) + 1, (1 + z)e (k) —
(1+x)) > min{er(k), (1 + 2)ey(k)) — (1 +2) = degerr (k) — (1 + ). [ |

Lemma 6 If G is a triangulation and G’ is an accepted child of G, then the following
hold.

o If G' wes constructed from G by Oy, then error,(G') > error,(G) — 3+ deg_err,(3).
o If G' was constructed from G by Oy, then errorg(G') > error,(G) — 2 + deg_err,(4)

o If G' was constructed from G by Os, then error,(G') > error,(G) — (3 + z) +
deg_err,(5).

Proof: If G is an only-Os-graph, the result follows directly from Corollary 1 and the
definitions.

Now suppose &, G’ are not only-Os-graphs. In case G' was constructed by Os, there
are vertices vy, 2, U3 whose degree in G' is greater by one than their degree in G.
Let the newly added vertex be v.

Then we have errors(G') = 3~ o (G, w) =

Ewév(c)—(u,vl,uz,va} erry(G', w) +errz(G', v) +errz(G', v1) +err. (G’ vp) +err. (G, v3).
By Lemma 5 for i € {1,2,3} we have err,(G',v) = deg_err,(deg (v,)) >
deg-err,(degg () — 1 = errg (G, v;) — 1, so error, (G') > error,(G) — 3+ deg_err_(3).

In the same way we get the results for O4 and Os. Note that for Oy the only vertex
w with degg(w) > deges (w) must have degree at least 6 in G, since otherwise G’
would not have been accepted because the last vertex added does not have minimal
degree.

If G’ is an only-Os-graph the result follows from the previous case, since error,(G")
is at least as large as the value obtained when taking deg err, (deg(v)) instead of
ei(deg(v)) for every vertex v.
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Definition 3 For z > 0, define m,; = max{3 — deg_err,(3),2 — deg_err,(4),3 + z -
deg_err (5)}.

Corollary 2 If G is a triangulation with n' vertices and errory(G) > mz(n — n') for any
z,n, then no accepted descendant of G with n vertices is an S-triangulation. (So G can
be discarded.)

Proof: Since the error of an S-triangulation is clearly 0, this follows by induction from
the previous lemma. =

Given S, the only variable parameter in m, is . In order to get a powerful bounding
criterion, we have to choose z in a way that the fraction error,(G)/m. is as large as
possible. While it is difficult to control the effect of z on error.(G), since it depends very
much on the degrees of the vertices in G, it is easy to control the effect on m,. So we
choose z maximal in a way that m, still is as small as possible, that is

v e(5)—1 if3,5¢5
" es(s) otherwise,

Since for all z we have deg_err_(5) = e4(5) this gives

m,={2 if3,5¢ S

3 otherwise.

Other values of z might potentially be used instead (or as well) but we have found only
one case where it improves the efficiency consistently. If .S includes 5 but at most two
values greater than 5, it helps a little to use z = 1 in addition to the value given above.

Lemma 7 If G is an only-Os-graph, I C V(G) an independent set and

> ver etldeg(v)) > n — [V(G)|, then no accepted descendant of G with n vertices is an
S-triangulation.

Since one application of O3 can change the degree of only one element of the independent
set, the result immediately follows. It would be much too expensive to compute the
independent set with the largest sum of errors, so we just rank the vertices with respect
to their errors (giving a higher rank to the ones with smaller degree if the error is the
same) and construct an independent set by recursively including the highest ranked vertex
that is no neighbour of a vertex already in the set.
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The various conditions we have described have been implemented as bounding criteria
and inserted into the program plantri. For various parameters the results have been
compared to filtering the output of plantri and to the results of the computer program
CPF described in [5] which can also construct complete lists of S-triangulations. They
were in complete agreement. Some example results and running times are given in the
appendix.

The special case S = {3,4,5,6}

As can be seen from the tables at the end, and could be predicted from the previous
section, the generation rate is not very high in those cases where S is small compared to
the set of all theoretically possible vertex degrees.

Of course, it is to be expected that special purpose algorithms will do better in some
specific cases. One such example is § = {3,4,5,6}.

The theorem by Eberhard, Steinitz and Rademacher does not only say that every triangu-
lation can be constructed from Ky by O3, O4 and Os, equivalently that every triangulation
except Ky can be reduced by the inverse operations O3, 07" and O;'. In fact, if the
minimum degree of a triangulation G other than Ky is mn, then G can be reduced by O}
centered at v for any vertex of degree m.

Since only O; ' can increase a vertex degree, we get the following lemma.

Lemma 8 Every {3,4,5,6}-triangulation can be constructed from a {5,6}-triengulation
or from Ky, using only the operations O3 and Oy.

The set of {5,6}-triangulations is the set of duals of the famous fullerenes, see [10].
They represent a special class of spherical carbon atoms. For this class a special purpose
generation algorithm has already been developed and implemented, see [4].

Using this generator fullgen, we implemented a special version of plantri - plantri_md6 -
that uses duals of fullerenes generated by fullgen as starting graphs and constructs the
class of {3,4,5,6}-triangulations out of them. Sample results are given in the tables at
the end.

An application of plantri_md6 was reported in [1]. A famous conjecture of Barnette is that
all {3,4,5,6}-maps are hamiltonian. We generated these cubic graphs using plantri.md6
as far as 176 vertices and found them to be all hamiltonian. For this paper, we have
extended the computation to 250 vertices with the same outcome. It is helpful to note
that O3 preserves hamiltonicity of the dual cubic graph, so testing only {4,5,6}-maps
is sufficient. Lemma 1 can be used to restrict the generation to {4,5,6}-maps with
reasonable efficiency.
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number of | number | min. degree | min. degree | min. degree | total
vertices | of faces 3 4 5

4 4 1 0 0 1
5 6 1 0 0 1
6 8 1 1 0 2
7 10 4 1 0 5
8 12 8 2 0 10
9 14 11 4 0 15
10 16 23 T 0 30
11 18 34 10 0 44
12 20 54 22 1 77
13 22 83 32 0 115
14 24 125 58 1 184
15 26 174 92 1 267
16 28 267 151 2 420
17 30 365 227 3 595
18 32 509 368 6 883
19 34 706 530 6 1 242
20 36 963 805 15 1783
21 38 1270 1158 17 2 445
22 40 1 708 1695 40 3443
23 42 2 204 2373 45 4622
24 44 2 876 3 354 89 6 319
25 46 3695 4 595 116 8 406
26 48 4 708 6 340 199 11 247
27 50 5 925 8 480 271 14 676
28 52 7 491 11 417 437 19 345
29 54 9 255 15 049 580 24 884
30 56 11 463 19 832 924 32 219
31 58 14 083 25 719 1205 41 007
32 60 17 223 33 258 1812 52 293
33 62 20 857 42 482 2 385 65 724
34 64 25 304 54 184 3 465 82 953
35 66 30 273 68 271 4478 103 022
36 68 36 347 85 664 6 332 128 343
37 70 43 225 106 817 8 149 158 191
38 72 51 229 132 535 11 190 19 4954
39 74 60 426 163 194 14 246 237 866

Table 1: {3,4,5,6}-triangulations listed with respect to their minimum degree.
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number of | number | min. degree | min. degree | min. degree total
vertices | of faces 3 4 5

40 76 71 326 200 251 19 151 290 728

41 78 83 182 244 387 24 109 351 678

42 80 97 426 296 648 31 924 425 998

43 82 113 239 358 860 39 718 511 817

44 84 131 425 431 578 51 592 614 595

45 86 151 826 517 533 63 761 733 120

46 88 175 302 617 832 81 738 874 872

47 90 200 829 735 257 99 918 1 036 004
48 92 231 042 870 060 126 409 1227 511
49 94 263 553 1029 114 153 493 1 446 160
50 96 300 602 1209 783 191 839 1702 224
51 98 341 960 1420 472 231 017 1 993 449
52 100 388 673 1 659 473 285 914 2 334 060
53 102 438 795 1 937 509 341 658 2717 962
54 104 496 961 2 249 285 419 013 3 165 259
55 106 559 348 2612 410 497 529 3 669 287
56 108 629 807 3 015 386 604 217 4 249 410
57 110 706 930 3 483 289 713 319 4903 538
58 112 792 703 4 002 504 860 161 5 655 368
59 114 885 137 4 600 343 1 008 444 | 6 493 924
60 116 990 929 5 257 856 1207 119 | 7 455 904
61 118 1102 609 6 019 580 1 408 553 | 8 530 742
62 120 1227 043 | 6 849 385 1674 171 | 9 750 599
63 122 1 363 825 7 805 813 1942929 | 11 112 567
64 124 1513 612 8 846 570 2295721 | 12655903
65 126 1673568 | 10041 875 | 2650 866 | 14 366 309
66 128 1 853 928 11 335288 | 3114236 | 16 303 452
67 130 2045154 | 12821597 | 3580637 | 18 447 388
68 132 2 255 972 14 415 241 | 4182071 |20 853 284
69 134 2 485363 | 16 248 586 | 4 787 715 | 23 521 664
70 136 2 732 106 18 211 371 5 566 948 | 26 510 425
71 138 2998 850 | 20454 113 | 6 344 698 | 29 797 661
72 140 3295000 | 22845386 | 7341204 | 33 481 680
73 142 3606 102 | 25587 469 | 8 339 033 | 37 532 604
74 144 3944 923 | 28 486 985 | 9604 410 | 42 036 318
75 146 4316 997 | 31 808 776 | 10867 629 | 46 993 402

Table 2: {3,4,5, 6}-triangulations listed with respect to their minimum degree.
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number of | number | min. degree | min. degree | min. degree total
vertices | of faces 3 4 5
76 148 4711036 | 35313024 | 12469092 | 52 493 152
77 150 5 135 792 39 315 257 | 14 059 173 | 58 510 222
78 152 5599 064 | 43 529 293 | 16 066 024 | 65 194 381
79 154 6 091 434 | 48 339 503 | 18 060 973 | 72 491 910
80 156 6621 013 | 53 361 973 | 20 558 765 | 80 541 751
81 158 7198926 | 59 117 687 | 23 037 593 | 89 354 206
82 160 7800 960 | 65110206 | 26 142 839 | 99 054 005
83 162 8460 776 | 71938 170 | 29 202 540 | 109 601 486
84 164 9168 331 | 79 041 731 | 33 022 572 | 121 232 634
85 166 9917770 | 87 147 815 | 36 798 430 | 133 864 015
86 168 10 711 602 | 95 517 629 | 41 478 338 | 147 707 569
87 170 11 590 678 | 105 090 744 | 46 088 148 | 162 769 570
88 172 12 491 728 | 114 936 802 | 51 809 018 | 179 237 548
89 174 13 478 996 | 126 169 796 | 57 417 255 | 197 066 047
90 176 14 518 876 | 137 732 540 | 64 353 257 | 216 604 673
91 178 15 638 778 | 150 895 746 | 71 163 435 | 237 697 959
92 180 16 807 692 | 164 343 816 | 79 538 725 | 260 690 233
93 182 18 100 327 | 179 751 990 | 87 738 289 | 285 590 606
94 184 19 400 142 | 195 420 726 | 97 841 157 | 312 662 025
95 186 20 854 463 | 213 287 224 | 107 679 684 | 341 821 371
96 188 22 358 888 | 231 489 556 | 119 761 030 | 373 609 474
97 190 23 978 453 | 252 233 786 | 131 561 725 | 407 773 964
98 192 25 642 259 | 273 226 012 | 145 976 654 | 444 844 925
99 194 27 515 451 | 297 264 739 | 159 999 441 | 484 779 631
100 196 29 367 163 | 321 450 518 | 177 175 662 | 527 993 343
101 198 31 444 918 | 349 098 646 | 193 814 634 | 574 358 198
102 200 33 551 307 | 376 999 846 | 214 127 713 | 624 678 866

Table 3: {3,4,5,6}-triangulations listed with respect to their minimum degree.
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number of S number of | time time time plantri time plantri
vertices structures CPF | plantri_ad for all for restricted
triangulations | triangulations
+ filter + filter
16 {3,6} 2 <0.01 0.02 58.7
20 {3,6} 3 <0.01 0.53
24 {3,6} 2 <0.01 37.0
26 {3,6} T <0.01 317.2
16 {5,7} 1 <0.01 0.07 58.7 (m5) <0.01
20 {5,7) 2 <0.01 8.59 (m5) <0.01
24 {5,7} 13 0.5 1859.2 (m5) 0.2
16 {4,9} 2 0.1 <0.01 58.7 (m4) 0.3
21 {4,9} 5 25.1 0.26 (md4) 1391
26 {4,9} 24 9 266.8 46.0
16 {3,4,9} 2 18.7 0.03 58.5
20 {3,4,9} 67 7 439.3 2.1
16 {4,5,7} 124 08 0.36 58.7 (m4) 0.35
20 {4,5,7} 3188 66.5 55.2 (m4) 246
16 {4,6,10} 20 1.4 0.15 58.7 (b) 0.01
18 {4,6,10} 81 18.1 2.10 (b) 0.03
20 {4,6,10} 418 273.6 335 (b) 0.2
14 {3,4,6,8} 350 11.6 0.1 1.24
16 {3,4,6,8} 2948 239.2 1.87 58.7
18 {3,4,6,8)} 28 619 35.83 3372.0
20 {3,4,6,8} 299 290 714.5
14 {4,5,6,8,9} 566 5.3 0.13 1.25 (m4) 0.02
16 {4,5,6,8,9} 8 313 140 2.8 62 (m4) 0.32
18 {4,5,6,8,9} 141 567 72 (md) 8.21
12 {3,4,5,6,8,9} 1 597 15.1 0.03 0.03
14 {3,4,5,6,8,9} 36 469 659.6 0.5 1.2
16 {3,4,5,6,8,9} 913 789 15.8 59
11 {3,4,5,6,7,8,10} 964 6.2 0.01 0.01
12 {3,4,5,6,7,8,10} 5 000 47.5 0.05 0.04
13 {3,4,5,6,7,8,10} 27 222 339.5 0.16 0.2
15 {3,4,5,6,7,8,10} 883 460 5.5 8.2
17 {3,4,5,6,7,8,10} | 30 565 942 224.5 444.7

Table 4: Numbers of simple triangulations and comparison of running times for various
sets of allowed degrees. The running times are in seconds on a 700MHz Pentium III. In
the last column (mx) stands for restricted to triangulations with minimum degree T and
(b) stands for restricted to triangulations with all vertices even degree.
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In Tables 1-3 we give the numbers of {3,4,5,6}-maps, {4,5,6}-maps, and {5,6}-maps
(fullerenes) up to 200 vertices.
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