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ALLOTROPES’
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The Dyck graph, which consists of 12 octagons on a genus 3 surface, can generate
possible zeolite-like carbon or boron nitride allotrope structures by a leapfrog transformation.
The automorphism group of the Dyck graph is a solvable group of order 96 but does not contain
the octahedral group as a normal subgroup. The normal subgroup chain of this automorphism
group can be obtained by considering the dual of the Dyck graph as the symmetrical tripartite
graph K, 4, analogous to considering the octahedron as K, ,,. The spectra of the X, ,, graphs have
only three distinct eigenvalues, namely a non-degenerate eigenvalue of +2n, a doubly degenerate
eigenvalue of —n, and a (3n - 3)-fold degenerate zero eigenvalue.

INTRODUCTION

Symmetrical structures for elemental carbon and the isoelectronic boron nitride,
(BN)y, can be generated from trivalent graphs constructed from non-hexagons by using a
leapfrog transformation [1]. Such a transformation consists of omnicapping (stellation)
followed by dualization, which triples the number of vertices with the following effects:
(1) The automorphism group of the original trivalent graph is preserved; (2) The
minimum number of new hexagons is provided to dilute the non-hexagon so that no pair
of non-hexagons has a common edge. A well-known example of a leapfrog
transformation is the conversion of a regular dodecahedron to the truncated icosahedron
of Cgp (1]

The most symmetrical trivalent graphs containing heptagons or octagons do not
lead to finite polyhedral structures but instead correspond to genus 3 units which can be
repeated indefinitely in all three directions to give an infinite periodic minimal surface
(IPMS) (2] exhibiting a zeolite-like structure [3]. Leapfrog transformations are also
applicable to such trivalent graphs again tripling the number of vertices of the unit cells
while diluting the non-hexagons with the minimum number of hexagons so that no pair of

‘This paper is dedicated to Prof. Horst Sachs in recognition of his pioneering contributions to
algebraic graph theory including applications in chemistry.
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non-hexagons has a common edge. These IPMSs are possible structures for low-density
carbon or boron nitride allotropes [4, 5, 6].

@ capping dualization -
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Dodecahedron Omnicapped Truncated
v=20,e=230,f=12 Dodecahedron Icosahedron
v=32,e=90, f=60 v==60,e=90, f=32

FIGURE 1. The leapfrog transformation converting the regular dodecahedron to the
truncated icosahedron of Cgg.

Of particular interest are two such symmetrical trivalent genus 3 graphs dating
back to the 19" century (Figure 2), namely the Klein graph of 24 heptagons [7] and the
Dyck graph of 12 octagons [8]. Both of these graphs exhibit interesting automorphism
groups, which have more complicated structures than the conventional symmetry point
groups [9]. The automorphism group of the Klein graph [7], called the heptakisoctahedral
group 70 [10] or the didodecahedral group D [11] in recent publications, is a simple
group of order 168, which can be generated from the prime 7 in a similar way that the
icosahedral group (/) of order 60 is generated from the prime 5.

Klein graph Dyck graph

FIGURE 2. The Klein graph of 24 heptagons and the Dyck graph of 12 octagons. In both
graphs, the pairs of outer arcs indicated by the same letters (A through G or H) are joined
to form a genus 3 surface.
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The automorphism group of the Dyck graph, called the tetrakisoctahedral group
40 in a recent publication [12], is a solvable group of order 96. However, 4O does not
contain the octahedral group (O or Q) as a normal subgroup nor is 40 a normal subgroup
of the automorphism group of the four-dimensional analogue of the octahedron [12].
This paper discusses the nature of the tetrakisoctahedral group by considering the group
40 as the automorphism group of the dual of the Dyck graph, which turns out to be the
symmetrical tripartite graph K4 4 4.

SYMMETRICAL TRIPARTITE GRAPHS AND THEIR DUALS

A symmetrical tripartite graph, Ky, ,, consists of three equivalent sets of n
vertices, conveniently designated by the labels {1, 2,...,n}, {I', 2',...,n'}, and {1",
2",...,n"}. Edges connect all possible pairs of vertices in different sets. However, no
edges connect any pair of vertices within a single set. Each of the 3n vertices of K, ,, , is
of degree 2n leading a total of (3n)(2n)/2 = 3n2 edges. Furthermore, each vertex of
Ky nn 1s shared by 2n triangular faces (i.e., circuits of length 3) leading to a total of 2n2
triangular faces. Note that K7 7 7 corresponds to the regular octahedron with the three
equivalent pairs of vertices {1,1'}, {2,2'}, and {3,3'} being the pairs of vertices located on
the three orthogonal C4 axes. The numbers of vertices, edges, and faces of the regular
octahedron are 6, 12, and 8, respectively, corresponding to 3n, 3n2, and 2n2, respectively,
for n = 2. The symmetrical tripartite graphs of interest in this paper are depicted in
Figure 3.

Y
IN_AL
\27
K322 Graph K, 4 5 Graph Ks44 Graph =
= Octahedron i Dual of Dyck Graph

FIGURE 3. The symmetrical tripartite graphs discussed in this paper.
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Now consider the process of forming the dual of a symmetrical tripartite graph,
Ky .nn» considered as a maximum symmetry embedding in a surface of minimum genus.
Such a dual, corresponding to the standard process of dualization of polyhedra, will be
designated generically as K*, , ,. In the dualization process the centers of the faces of
K*y nn are located at the vertices of K, , » and the vertices of K*,, , , are located above
the face centers of X, ,, . Two vertices in K*), , ,, are connected by an edge if and only if
the corresponding faces in K, , share an edge. The dualization process has the
following properties:
(1) The numbers of vertices and edges in a pair of dual graphs satisfy the relationships
v=fet=¢ ff=v
(2) Dual graphs have the same symmetry and thus the same automorphism groups;
(3) Dualization of the dual of a graph leads to the original graph;
(4) The degrees of the vertices of a graph correspond to the number of edges in the
corresponding faces of the dual and vice versa.
Since each of the vertices of the symmetrical tripartite graph, K, ,, embedded in a
surface of minimum genus, is a part of 2 triangular faces, the corresponding dual K*,, ,
is a trivalent graph in which all of the faces are 2n-gons. In the simple example of the
octahedron as K3 7 5 the dual K*7 5 7 is the cube, which has all degree 3 vertices and only
square faces (Figure 4). The trivalent nature of the duals K*,, , , makes them relevant for
the study of possible highly symmetrical structures for carbon and boron nitride
allotropes. Furthermore, the preservation of the automorphism group upon dualization
means that the automorphism groups for these chemically relevant trivalent graphs
(K*),n,n) is the same as that of their duals K, 5 », Which follow a simple pattern because
of their symmetrical tripartite nature.

dualization

Octahedron: Cube:
v=6,e=12,f=8 v=8,e=12,f=6

FIGURE 4. Dualization of the octahedron to give a cube.
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AUTOMORPHISM GROUPS OF THE SYMMETRICAL TRIPARTITE GRAPHS

The Octahedron as K3 3 3

As noted above the octahedron is the symmetrical tripartite graph K3 7 5 (Figure
3). Its automorphism group O has the following normal subgroup chain (using the
familiar symmetry point group designations [9]):

o (&1, %c, (b,

Order: 24 12 4 2 1

This subgroup chain is closely related to the tripartite structure of the octahedron. The
process of going from O to its normal subgroup T of index 2 corresponds to removal of
the operations of period 2 in the symmetric group S3 permuting the three sets {1,2},
{172}, and {1",2"}. In terms of the underlying octahedron, going from O to its normal
subgroup T removes the operations of period 4. The ext part of the subgroup chain from
Tto D, of index 3 corresponds to removing the remaining operations of this symmetric
group 83 (i.e., the operations of period 3). The resulting D normal subgroup represents
all possible 2° = 4 permutations within the three individual sets {1,2}, {1'2'}, and
{1",2"} without any permutations moving members of one of the three sets to another set.

The Dual of the Dyck Graph as K4 44

The Dyck graph (Figure 2) has 12 octagonal faces and thus 48 edges and 32
vertices. Its dual is the symmetrical tripartite graph K444, which necessarily has 12
vertices, 48 edges, and 32 triangular faces (Figure 3). Its automorphism group 4O has the
following normal subgroup chain (using a combination of familiar symmetry point group
designations and less familiar designations from Dyck’s original paper [8]):

40 (& 63,341 (3 6444108 Dy, (60,8 C, (&,

Order: 96 48 16 8 4 2 1

Again this subgroup chain is closely related to the Ky 4 4 tripartite structure of the dual of
the Dyck graph. The process of going from 40 to its normal subgroup G[3,3,4] of index
2 corresponds to removal of the operations of period 2 in the symmetric group S3
permuting the three sets {1,2,3,4}, {1'2,3'4'}, and {1",2"3".4"}. In terms of the
underlying dual of the Dyck graph, going from 40 to its normal subgroup G[3,3,4]
removes the operations of periods 8 and 4. The next part of the subgroup chain from
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G[3,3,4] to G[4,4,4] of index 3 corresponds to removing the remaining operations of S3
(i.e., the operations of period 3). The resulting G[4,4,4] normal subgroup represents all
possible =16 permutations within the three individual sets {1,2,3,4}, {1'2',3',4'}, and
{1",2",3" 4"} without any permutations moving members of one of the three sets to
another set.

The Symmetrical Tripartite Graph K3 3 3:

Intermediate between the K372 (octahedron) and K444 (Dyck graph dual)
symmetrical tripartite graphs is the K3 33 tripartite graph consisting of 9 vertices, 27
edges, and 18 faces, all of which are triangles. The Euler characteristic y (=v—e + /) is
9 - 27+ 18 = 0 corresponding to a genus 1 surface, i.e., a simple torus (Figure 5a). The
automorphism group of this graph is a group of order 54, which is one of the groups of
genus 1 discussed in a comprehensive 1939 paper by Coxeter [13]. Using the
terminology of Coxeter this group can be described as the direct product 3,3|3,3 x C; and
has the following normal subgroup chain:

3333 xCy (333p3(BColdC (B¢,
Order: 54 27 9 3 1

The group 3,3|3,3 is a group of order 27 generated by the relationships R3 = 53 = (RS)3 =
(R 'S)” = E as described by Coxeter [13].

FIGURE 5. (a) A torus; (b) Embedding the dual of K3 3 3 onto a torus. To form the torus
the three pairs of edges designed by a, b, and ¢ each are identified. Six of the nine
hexagons (designated by 1) are completely within the outer hexagon boundary whereas
the other three hexagons (designated by !/7) are split in half by the boundary.
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The dual of K333 is a graph with 18 vertices, 27 edges, and 9 faces, all
hexagonal. This graph can be embedded onto a torus as indicated schematically in Figure
5b where the three opposite pairs of edges of the outer hexagon are identified to make the
torus, i.e., @ to @, b to b, and ¢ to c. This graph can be tripled by the leapfrog
transformation to give a graph with 54 vertices, 81 edges, and 9 faces, which in principle
could describe a toroidal form of carbon or boron nitride. However, such a toroidal
structure is energetically unfavorable because of the need to bend the hexagonal faces to
match the curvature of the underlying torus [14]. The experimentally observed forms of
toroidal carbon [15, 16, 17] minimize this strain by forming a much larger torus with
2,000 to 30,000 carbon atoms so that the local curvature in individual hexagons is nearly
zero. In addition, theoretical work on toroidal graphitic molecules [18, 19] suggests
minimization of this strain by replacing pairs of hexagons with pentagon-heptagon pairs
so that the pentagons and heptagons are at sites of positive and negative curvature,
respectively, of the underlying torus.

The Spectra of the Symmetrical Tripartite Graphs

The high symmetry of the K, ,, , graphs leads to simple spectra with only three
distinct eigenvalues, namely a non-degenerate eigenvalue of +2n, a doubly degenerate
eigenvalue of —n, and a (3n — 3)-fold degenerate zero eigenvalue. Note that the most
positive eigenvalue (+2n) corresponds to the vertex degrees of these highly symmetrical
graphs. The spectra of the K}, » , graphs are consistent with the {2,-1,-1} spectrum of
the triangle C3, which corresponds also to the complete graph K3 and is the simplest
symmetrical tripartite graph, namely K | ;. The spectra of the octahedron (X3 7 7) and
the dual of the Dyck graph (Kjy 4,4) are depicted in Figure 6 as examples.

| F—
22—
g Ol
4 —
8 s
Ka22= Kiaa=
Octahedron Dyck graph dual

FIGURE 6. The spectra of two regular tripartite graphs.
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