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Abstract

The solution of the time-dependent Schrodinger equation for linear chains of atoms is considered
and applied to wavepacket propagation of two types of atoms in aperiodic and periodic
sequences. The aperiodic sequences considered are the golden mean ( Fibonacci) sequence, the
silver mean sequence and the Thue-Morse sequence. These are compared with the 2-period
sequence and currents are calculated. A measure of average current for such systems is

constructed using the probabilities of substrings in the various sequences.
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I.Introduction

The application of mathematics to chemistry has broadly taken two, very successful routes. One
of these is the highly accurate computational approach which has led to many guantitative
descriptions of atomic and molecular systems. An alternative approach is to use simpler models,
often relying on graph-theory, to construct models that lead to physical and chemical insight, but
which are far more qualitative in their predictions. In this paper we use the latler approach to
construct a time-dependent model for a current in a chain. The theory of currents in molecular
systems is usually approached using time-independent scattering theory [1-3], and most
treatments involve Green's functions [4,5] but here we consider the time-dependent Schrodinger
equation in the context of a simple model for the chain. The chain may be considered to be a
molecule consisting of atoms which interact with their nearest neighbours so that essentially we
are utilising a theory which is equivalent to Huckel theory for large organic molecules or to the
tight-binding model for solid state theory [5-8], but it is a very versalile model that can be applied
in many situations. The model is developed in section 2 and graph theory utilised to construct an

operator approach for the solution of the equation.

The theory developed is a generalization of earlier work [9] ,but here we apply it to chains whose
atoms are in both periodic and aperiodic order. In the latter case we consider chains with two
types of atoms arranged in aperiodic sequences such as the Fibonacci sequence , often called the
golden sequence, its generalization to the silver sequence and the Thue-Morse sequence. The
theory of these sequences has been studied in detail in previous work [10,11] and generalized to
similar sequences with three types of atom [12]. In section 3 we outline the analysis of the
probabilities of strings of atoms in these sequences and in section 4 we illustrate the calculation

of the current through these molecules.

2. The solution of the time-dependent Schrodinger equation for the chain molecules.

Consider a chain of atoms with one atomic orbital wy, associated with euch atom and we define



<o, [Hlo> =0, . <oy [Hw 1> =B =<0y | Hog>  n=1230N

(h

Here the a, or the B, (or both) may take values in aperiodic order and we will also consider

chains of length 2N +1 where the atoms have been renumbered from -N...N. Writing the non-

stationary wavefunction in the form

y=3 cy(0 o, (2)
n

and substituting into the Schrédinger equation

oy
= =Hy (3)
we obtain
dey
g =Pns1Cn+1 T Bu e tep ey =Lycy + Locy + Locy )
with
Lycn=BniCast - Locy=Buepy Loep=0pcy (5)

[n vector notation, with the [cn} as elements of the column vector ¢, the solution may be written

2
e=exp(-it( Ly +1_+ Lo Deg = ( 1-it(L, +L_+Lg) -5 (L7 4L 415 +L,L_

+L+L0 + [,7L+ + 1,7[,0 +LOL+ + LOL,) F e ) CO

(6)

where ¢q is the initial charge distribution and no commutation of L, L_and Lo has been

applied in the expansion. Since the chain is finite we have the additional boundary conditions
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Lycn=0 (8)

and these conditions reduce the number of terms in the expansion (6). The vector ¢g can be

cxpanded in terms of the unit vectors e, , which have elements 8y, , and the linearity of implies

that we can obtain the solution as the equivalent combination of solutions with initial charge
distributions e; . Solutions for ¢ = e, correspond to an initial charge distribution only on atom
s; when N is large compared to s the condition (8) only affects the higher order terms in the

expansion but the condition (7) is more significant. Each term of length n in the expansion (6)

consists of a string of p Ly's , g L_'s and r L's and the condition (7) implies that for each
substring of this string, as we move from right to left, witha L 's and b L_'s, we have
a-bz 1 -s. Forexample with s =0, so that the initial conditions are ¢,(0) = 8,4, the only
possible strings of length 4 not including Lgare {L_L,L L, ,L_ L L L.,
Ly by b Ly Ly b Lo Ly Ly L L Ly} . Now from (6) we may find an
expansion [or each of the components of ¢ so that

Csipq® = 3 fpan OV ©)

pHq+r=n

where in principle the sum is from n=0 to e, and f(p,q.r) is a function of the @'s and B's
obtained from applying p L,'s ,q L_'sandr Lg's to cg(0) where p+q+r =n and the condition
(7) holds for each substring. The terms of this expansion may be illustrated using a graph. Let

(x.y) = (a+b, a-b+s) denote integer co-ordinates then any string of the L's can be modelled as a

graph from (0s) to (p +q,p-q+s) where: (i) each L, increases a by 1 and can be represented by
an edge from (a+b,a-b+s) to (a+b+1,a-b+1+s), (ii) L_ increases b by | and can be represented
by an edge from (a+b,a~b+s) to (a+b+1,a-b-1+5), (111} LO is represented by a loop at (a+b,a—

b+s), This is illustrated in fig | where s=0 so that we start at atom! and the graph represents the
string L_L_ L'O LyL,.
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The coefficients f(p,q,r) are conveniently calculated using a recurrence formula of the form

f(p.q.r) = Bpy_of(p-L.a.0) + By_q41fpg-1.0) + 00y o f(p.qur-1) (10)
p-q P-q P-q

with £(0,0,0) =1 and f(p,q,r)=0 if any of the integers p,q or r are negative. This is easily
established by noting that any string of L's of length n must have a precursor of length n-1 and
the three terms on the left hand side of (10) correspond to the corresponding strings of length n—

| in the precursors.

Given the probability amplitudes in (10) we may calculate the time-dependent current through

any subchain of the atoms :

* *
i0=iF Balcaens) <peiCn) (1)
n
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where the sum is over the n atoms in the subchain and j(t) is necessarily real.

2. The aperiodic sequences

Consider the substitution rule A=> AB , B-> A, then starting at A we may form in turn the
following sequences: A, AB, ABA, ABAAB, ABAABABA, ABAABABAABAAB... These form
a sequence of atoms making up an aperiodic chain. The particular chain is known as the
Fibonacci or golden mean sequence since the ratio of the A's to the B's as the length of the
sequence goes to infinity is the golden mean

o:ﬂ"—z‘@ (12)

To see this note that if we use the substitution rule to any sequence of length N to produce a

sequence of length N and denote the number of A's and the number of B's by N(A) and N(B)

then we have
N =2N(A) + N(B), N(A) = N(A) + N(B) and N(B) = N(A). (13)

(This follows from the basic substitution rule A—> AB , B-> A, since on substitution every A
gives rise 1o one A and one B and every B gives one A in the substituted string; for example

ABA-> ABAAB so that N(A) =2,N(B) =1, N(A) = 3, N(B)=2 and N =5 )

Thus for any string formed by successive substitutions from A or any substring of such a string,

when an additional substitution is made, we have

N(a) N(B)

Y (14)
N(B) e

=1+

and in the limit as N, N —> o= we obtain the infinite Fibonacci sequence and from (14) we have



131

o=1+ 5 (15)
and the positive root is the golden mean. Similarly we can deduce that

NA) _ N(AYN@BW1 o+l _ o

L
SINAVNB) 11 Pherl = 2,0 = o Asbimee (16)

N o~ +0

Thus we may deduce that P(A) = é and P(A)/P(B)=0c sothat P(B) = .

( Note that these are the probabilities of A and B in the infinite Fibonacci sequence defined by
this substitution process and for any string or substring formed by successive substitutions from

A we have P(A) =N(A)/N and P(B) = N(B)/N and the normalization is preserved).

A similar argument shows that as N N —> o

1
- a7

and consequently if we have two substrings S and S' before and after substitution then the
number of occurrences of S'in the substituted string is identical with the number of occurrences
of S in the original string so that N (8" = N(S) and taking the limit as

N N —> oo we may deduce

Bs) = lim 82 = fim (& —NIQ)

N N

1
G P(S) (18)

(Thus for example if S = ABAA then S'= ABAABAB and the probabilities of S and §" in the

infinite string are related by equation (18)).

We note that on substitution A-> A} = AB > Ay = ABA >A3=ABAAB-> .. The analysis

of the substitution can be extended by considering the symbols that must necessarily follow
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these : A->AB(A) since A must follow AB. Looking at this more generally we can describe the

process by the pattern

A>A LA > ArAy A-> AJArA 1A > (19)

The relationship between this pattern and the original description of the substitution may be

elicited as in equation (20) below :
A->AB(A)> ABA(AB)(A) —> ABAAB(ABAYABYA)—> .. 20)

The first substitution from A produces AB and A is appended to this. Applying the substitution
rule to AB(A) produces ABA from AB, AB from A and an extra A is again appended to obtain
ABA(AB)(A) where the parentheses is used to separalte the terms and to illustrate the precursive

relationships.

Taking a general string in the sequence in (19), S=Ai 1A A, wehave

S'= A{42 Ajy1--A and consequently, from (18)

. P(A) (21)

1 1
P(AH'Z Ajp-A) = 5 P(AHlAi DAY= 0?’1 P(A]A)= 0i+2

Suppose now that Aj, > = X X5 .. Xy where the X are A or B then

N (A9 AjypoA) = N(X| X9 XpAjy-A) =

N (Xp. XpAjp - A) = N (XpAiL(..A) (22)

so that
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P(AHQ Ajp-A) = P(XIX? XA A) = PG XA A = P(Xn’\iﬂ -A)
(23)

and consequently all the allowed probabilities in the string may be calculated. The probabilities

used in this paper are given in the tables.

There is another symmetry in these probabilities. Denoting the reverse sequences of A; by A; |

so that Jil =BA, "-\2 = ABA, A3 =BAABA, ... then (20) may also be denoted by

A-> AA| > AA Ay SAA Ay Ay > (24)

This shows for example that at any stage in this process N(AB)=N(BA) so that
P(AB) = P(BA) and , more generally, for any sequence S constructed P(S) = P(S) where S is

the reverse string to S. This symmetry is apparent in the tables of currents given later.

A similar analysis may be carried out for the other two sequences considered. For the silver mean

sequence, A—> AAB, B-> A we have

A=> A| = AAB —> A) = AABAABA ->A3=AABAABAAABAABAAAB > ... (25)

and the corresponding result to (20) is

A—>A AA -> AgA| AJAA-> A3ArAgA A |AA ... (26)

or in the reverse form

A-> AAA| > AAA A Ay —>AAALA Aghg Ay > @7
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The probabilities can be calculated analogously to those for the golden mean ( but now @ is the

. 2
positive root of 6= 26 —1=0) and the reversal symmetry holds

‘The final sequence considered is the Thue-Morse sequence A->AB, B->BA so that

A->A| = AB > Ay = ABBA —>A3=ABBABAAB—> ..

and

B->A| =BA -> A; = BAAB-> Ay = BAABABBA->.... (30

and again the probabilities can be calculated by an analogous procedure to eqns (21)-(23) but
with 6 = 0.5. (For a complete description of the calculations of these probabilities see Refs. 10-
12). Note that the A; may be considered as strings of AB's and BA's and the starting from B
instead of A leads to the same probabilities of the strings the reversal symmetry follows since
that in (30) the strings are either self reverse or the reverse of the equivalent string starting from

the other starting point.
3. Currents through aperiodic and periodic chains

In this section we consider 4 types of chain: the golden mean ( Fibonacci sequence), the silver
sequence, the Thue-Morse sequence and the 2-periodic sequence of atoms in the order
ABABABAB. ... For each of these we consider the problem of estimating the average current
through such chains so that we are essentially estimating the dc molecular current. In principle
this is a many electron problem and to use one-electron theory to estimate the current we
consider a small subchain of n atoms, S say, and calculate the current due to a wavepackel
initially localized at atom 0 which moves onto S so there is a directed current through S. In this
model we also connect a lead 1o atom n so that the wavepacket can move off S and we have a
large chain molecule. ( We also consider models where there is another lcad interacting with
atom 0 so that the electron has a probability of moving away from S in the opposite direction .)

This model assumes that there is only one wavepacket so that essentially we are assuming that
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the times considered are sufficiently small that the probability of two electrons on S is negligible.
The components of the wavepacket are € spq (1) 1n (9) with s =0 since we are starting
with a localized charge at atom 0. For large p ( or q) the component is small initially and reaches
a maximum for some t . This of course applies to the atoms on the leads and shows that the
model is suitable to describe the current through S ( see { 9] for further details of the
propagation of such wavepackets). To estimate the average current in S:

T

o 2
1 1 i
) = T 1Jljmdr G1)

with j(1) calculated from (11) through the subchain S and into the lead attached to atom n, where
T| >0 is chosen so that the transient effect of the transfer of the electron onto S has dispersed.
The time Ty > T is chosen so that the electron still has a significant probability of being on the
chain; T needs to be sufficiently small so that the assumption of only one electron on § is
acceptable. In these calculations we have considered subchains of n=7 atoms and the parameters
are such that the average currents can be estimated using T| = 2 and T, = 8. For the golden

mean sequence there are 8 possible subchains S; of length 7 ( see table 1) with probabilities p;

so that the average current through a chain constructed using this sequence can be estimated by

the expectation value:

S (32)

=1

In table | we list the 8 chains and their probabilities together with the estimates of the currents
through these subchains into the leads. In each case we calculate the current through 20 atoms,
the first 7 corresponding to the aperiodic sequence and the remaining forming a lead attached to

alom 7 (in the final row we give the expected value of the current calculated from (32)). The

various currents are calculated using : (i) varying p on the subchain so that B4 = 1.2, Bg = 0.8;
(ii) varying o on the subchain so that oa =1, og = 0.8. The values of o and B for the leads are
taken to be 0 and 1 respectively. The calculations are presented for By =1 corresponding to a lead

attached to atom 0 ( so that the chain is from -N..N , N=20) and Bq =0 where there is only one
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lead which is attached to atom 7. The results presented i tables 2, 3 and 4 are calculated using
the same parameter values but with the silver sequence , the Thue-Morse sequence and the 2-

pertodic sequence . There are 8 valid sequences of length 7 for the silver mean, 20 for the Thue-

Morse sequence and two for the 2-penodic sequence. The pattern of the numerical estimates of
the currents 15 similar in all cases with the magnitude reduced by approximately 1/3 in the cuases
where there are leads to left of atom 0. In these cases there is of course a current in the opposite
direction along the lead at atom 0. The uniformity of the calculated average currents | for a given
set of parameters in all subchains any of the sequences suggests that the expected value of the
curreni provides a useful measure of the average or dc component of the current through chain

molecules with atoms in these sequences.
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Sequence Probability Average Cunrent] Average Currentf Average Curreny| Average Current

Byt Ba=1.2, op=1, ap= 1

fig =03, i -0 E'B =0.8, By =1 | ap =03, Pp=0 | ag =08, B():i
ABAABAA 0.090169943 1.174612063 051810176 1.169983246 0.45512292
ABAABAB .145898033 118313121 0.46011630 1.234633461 0.43092234
BAABAAR 0.090169943 1.485897057 0.41387039 1.206527135 0.48881733
ABABAAB 0. 145898033 1.088958552 041005761 1.265907589 048419383
BAABABA 0.145898033 1.106593814 0.38200891 1146297894 0.46544088
AABAABA 0.145898033 1.262268134 0.49784092 1.184807233 0.44920416
AABABAA 0.090169943 1.189373849 0.44643260 1.186791413 0.44838163
BABAABA 0.145898033 1.437004340 0.40016047 1.168308588 0.46243592

1.229851425 0.43513344 1.19679489 0.46722170

The average currents for all subsequences of length 7 in the Golden Mean chain and the

expected value of these currents calculated from (32).




TABLE 2 - SILVER FIBONACC] SEQUENCE
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Sequence Probability Average current | Average current | Average current | Average current
BA:I,I, BA:I.Z. oy =1 ap =1
BB=08. ﬂu:O.S. o =08 ag = 0.8
By =0 Bp=1 Bg=0 By=1
AAABAAB 0.1213203436 1.145209913 0.4939571702 1.206733007 0.4744227503
AABAAAR 0.1213203436 1.167193258 0.4921027052 1.235616685 0.4753738447
AABAABA 0.1715728752 1.262268134 0.4978419193 1.184893399 0.4 192738805
ABAAABA 01213203436 1.271708512 0.5160659075 1.181031133 0.4625171905
ABAABAA 0.1715728752 1.174612063 05181017568 1.170077622 0.4550912437
BAAABAA 0.1213203436 1.568799591 0.4574231133 1.118868154 04614112255
BAABAAA 0.1213203436 1.609685199 0.4728425987 1.150056423 0.4672868687
BAABAAB 0.0502525317 1.485897057 0.4138703928 1.206510359 0.4888248057
1.313213158 0.490204985 1.179535865 0.4637415742

The average currents for all subsequences of length 7 in the Silver Mean chain and the expected

value of these currents calculated from (32)




TABLE 3 - THUE-MORSE SEQUENCE
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Sequence Probability Average current | Average current | Average current | Average current
Ba=12 Ba= 12, oy =1, ap =1
Pp =038, Bg =038, op =038 og=08
Bo=0 Bo=! =0 Bo=1
AABABBA 0.833333333 1.123128667 0.370972965 1.195242338 0.449908853
AABBAAB 0.416666667 1.133200920 0.369577288 1.245245051 0473277334
AABBABA 0.416666667 0.930997262 0.326127454 1.206514730 0.450429428
ABAABAB 0.416666667 1.183131217 0.460116297 1.234495504 0.4¥0958151
ABAABBA 0.416666667 0.94937844 1 0.428003480 1.175732270 0.458046441
ABABBAA 0.416666667 1.073767435 0.373148717 1.200583177 0.457073439
ABABBAB 0.416666667 0.977918027 0.349262000 1.262832185 0480317363
ABBAABA 0.416666667 1.023239294 0.379712643 1.225923699 0.461894392
ABBAABB 0.416666667 0.974587153 0.369252176 1.286677777 0.488985714
ABBABAA 0.833333333 1.195741004 0.382531915 1.228924830 0.439169204
BAABABB 0.833333333 1.260610898 0.365378964 1.214303085 0.494270339
BAABBAA 0.416666667 1.622886695 0.386225306 1.144394714 0462329169
BAABBAB 0.416666667 1.255407747 0.328887994 1.207547800 0.486277644
BABAABA 0.416666667 1.437004340 0.400160469 1.168286210 0.462451843
BABAABB 0.416666667 1.429782627 0.350627359 1.234497478 0492591423
BABBAAB 0.416666667 1.437446846 0319613827 1.250075296 0.489279538
BABBABA 0.416666667 1.177172316 0.33088089¢ 1.194662032 0465403219
BBAABAB 0.416666667 1.143051471 0.334598830 1.224111232 0.496767873
BBAABBA 0.416666667 1.406961958 0.353618008 1.157943135 0.472084006
BBABAAB 0833333333 1177841052 0.3486 6330 1.256563065 0.500784920
1194614990 0.366450546 1.116640048 0474434707

The average currents for all subsequences of length 7 in the Thue-Morse chain and the
expected value of these currents calculated from (32).
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Sequence Probability Average current Average current | Average current Average current
Ba=12, Ba=12. ay = apy =1,
BB =0.8, Bp =08, o =08 op =08
By=0 Bo=! Pg=0 P =1
ABABABA 0.5 1.297736369 0.460136197 1.229852885 0.466295343
BABABAB 0.5 0.928759443 0.392182061 1238351644 0 487050577
1.113247906 0.426159129 1.234102265 0476672960

The average currents for all subsequences of length 7 in the 2-Period chain and the

expected value of these currents calculated from (32).
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In figure 2 we illustrate the currents through the subsequence ABAABAA from the golden

mean, continued into the lead so that it is the current through 20 atoms .These graphs are for
case where By = 0, where B is varying ( light shaded curve) and o varying (dark shaded curve).
It is clear that, once the transient effects have dispersed, the current with o varying is much
uniform. This is repeated for all the calculations so that varying o leads to a more uniform
current. For a long chain with equal o's and B's the current is approximately constant when the

transient effects have decayed. (See ref [9]). There is no reason to suppose this will be the case

with varying o or f since the coefficients ¢ (1) depend on o, and B, However they have the
same general shape as the corresponding coefficients in the non-varying case, so that it expected

that the behaviour will be similar. It is much more significant that in addition the current in (11)

has a factor B, in every term and when the 's are varying will cause further oscillations which
persist as the wavepacket moves onto the lead. It is not therefore surprising the effect of varying

f3's 1s more pronounced.
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Finally, in figure 3 we illustrate the current only through the subchain of 7 atoms using the

golden mean sequence ABAABAA with Bp=1 and varying o showing that eventually j(t) is

negligible corresponding to the fact that the wavepacket has propagated through the chain .

[hese calculations suggest thal the simple Huckel of tight-binding model, which has provided

useful insight in many chemical and solid state systems, can also be useful in time-dependent

calculations of currents through chain molecules. The systems that can be treated include atoms

in aperiodic order and consequently include quasi-crystals and any newly formed aperiodic

chain that may be constructed using STM techniques. The theory considered here can be used to

calculate both the transient currents and the average currents whereas conventional calculations

do not use the wavepacket approach and usually treat only the average current. The calculation

of the average current for chain molecules with the atoms in aperiodic order would

conventionally require using a large chain so that all the effects of the various orders of the atoms

can be included but here we have shown that a consistent measure may be obtained by calculating

the expected value of the average current over a set of small subchains.
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