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Abstract

Let G be a bipartite graph without dk-cycles. It is well known ( [1,2] )
that M(G) = \/[det A(G)|, where A(G) is the adjacency matrix of G and
M(G) is the number of perfect matchings of G. In this paper we show that:
if G is invariant under the reflection across some plane ( or straight line
) then M(G) = |det A(G*)| under some conditions, where G* is a graph
with half of the number of vertices of G.

1. Introduction

A perfect matching of a graph G is a set of independent edges of G covering all vertices of
G. Problems involving enumeration of perfect matchings of a graph were first examined
by chemists and physicists in the 1930s, for two different (and unrelated) purposes: the
study of aromatic hydrocarbons and the attempt to create a theory of the liquid state.

Shortly after the advent of quantum chemistry, chemists turned their attentions to
molecules like benzene composed of carbon rings with attached hydrogen atoms. For
these researchers, perfect matchings of a polyhex graph corresponded to "Kekule struc-
tures”, i.e., assigning single and double bonds in the associated hydrocarbon (with carbon
atoms at the vertices and tacit hydrogen atoms attached to carbon atoms with only two
neighboring carbon atoms). Resonant theory states that there are strong connections
between combinatorial and chemical properties for such molecules ( see (3] ); for intance,
those edges which are present in comparatively few of the perfect matchings of a graph
turn out to correspond to the bonds that are of longer length, and the more perfect match-
ings a polyhex graph possesses the more stable is the corresponding benzenoid molecule.
Since hexagonal rings are so predominant in the structure of hydrocarbons, chemists gave
most of their attention to counting Kekule structures of benzenoids ( see [4-8] ).
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Let G be a bipartite graph. We say that G is symmetric if it is invariant under
the reflection across some straight line S ( say symmetry axis ). In [9] M.Ciucu gave a
matching factorization theorem of the number of perfect matchings of symmetric planar
bipartite graph in which there are some vertices lying on the symmetric axis S but no
edges intersect S. M.Ciucu's theorem expresses the number of perfect matchings of G in
terms of the product of the numbers of perfect matchings of two subgraphs each one of
which has nearly a half of vertices of G.

In this paper we will consider the symmetry graph G in which there is no vertices lying
on the symmetric axis. Our result is not only valid for plane graphs but also valid for
some graphs in 3D. In other words, G is invariant under reflection across some symmetric
plane or straight line. Our main result is to prove that the number of perfect matchings

of G can be expressed by a determinant of the adjacency matrix of a graph G* which has
a half of vertices of G.

The start point of this paper is the fact that the number of perfect matchings of some
bipatite graphs can be expressed by the determinant of their adjacency matrix or by
product of their eigenvalues. In order to formulate the first lemma we need to introduce
the following terminology.

Let G be a bipartite graph with perfect matchings. A cycle C of G is called a nice
eycle if G — V(C) has at least one perfect matching, where G — V(C) denotes the sub-
graph obtained from G by deleting all vertices of C' and their incident edges. Based on
the results of Dewar and Longuet-Higgins (1], Graovac et al [10] and Cvetkovic et al [11],
Heping Zhang and one of the present authors gave the following lemma.

Lemma 1Yl Let G be a bipartite graph with 2n vertices and let A and M(G) de-
note the adjacency matrix and the number of perfect matchings of G, respectively. Then
det A = (=1)"[M(G)]? if and only if G has no nice cycles of length 4s, where s € {1,2,-}.

Now let us recall the relationship between the terms of determinant of a real matrix
A = (ay;) and the 1-factors of its associated weighted digraph. Let A¥ = (aj;) be a matrix
of order n. A digraph D" = D{A") with n vertices labeled by the integers from 1 to n is
defined as follows: If a;; # 0 then there is an arc from vertex i to vertex j with associated
weight a;; in D*, where 0 < ¢,7 < n. Clearly in this digraph loops are allowed and the
arcs with the same head and tail are not allowed. A 1-factor of DY is defined to be a
spanning subgraph of D which is regular of in-degree and out-degree 1. The following
results were first exploited by Konig [13] and were developed by Coates [14].

Lemma 205! Let A% be a matrix of order n and € be the set of 1-factors of D¥. Then

det A =Y "(~1)" f(h),

hen

where the summation ranges over every l-factor of D¥, and L, is the number of even
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components of i and f(h) is the product of the weights of arcs in h.

When AY is a Hermite matrix the associated weighted digraph D* = D(A") can be
considered as a weighted undirected graph G* = G(A¥) in a natural way. In fact, a 2-
dicycle in D* is considered to be an edge in G, two dicycles with the same vertex-set and
different directions are considered as a cycle in G¥. Following Harrary [16] and Sachs [17]
there is no difficulty to get a result by lemma 2. In order to do this, we need to introduce
further terminology. A spanning subgraph H of graph G is called an elementary spanning
subgraph of G, if each connected component of H is a loop or cycle or an edge.

Lemma 318 Let A* be a Hermite matrix and © be the set of elementary spanning
subgraphs of G*. Then

det A” = 3 (~1)™ 2 F(C) [ (BN,

hed

where the summation ranges over every elementary spanning subgraph in G¥, and Ly is
the number of even components of h, f(X) is the product of the weights of edges in X, L,

is the number of cycles in h, Cj is the set of cycles and loops in k and E; is the set of
disjoint edges in h.

2. Main result

Let G be a connected bipartite graph with a symmetry plane ( or axis ) S and
there are not vertices lying on S ( We consider S to be horizontal ). Then the set of
edges of G intersecting S forms an edge cut K of G. If we delete the edges of K from G,
two isomorphic subgraphs ( say the upper and lower half of G ) are obtained ( see Fig. 1).

Fig. 1 A connected bipartite graph G with symmetric plane S and upper half of G.

Now we will define a graph G* obtained from the upper half of G and use the determinant
of its adjacency matrix to calculate the number of perfect matchings of G. In fact G*
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is obtained form G by adding a loop to each vertex in the upper half of G which is an
end vertex of an edge in the edge cut K. Similarly we can define a weighted graph G~
by adding a loop of weight —1 to each vertex of in lower half of G which is end vertex of
an edge in the edge cut K. By this definition the graphs G* and G~ obtained from the
graph G indicated in Fig. 1 are pictured in following Fig. 2.

Fig. 2 The graph G* and weighted graph G~.

Theorem 4 Let G be a symmetry connected bipartite graph without nice cycles of length
4s,5 € {1,2,3,---} and there are not vertices lying on the symmetry plane ( or axis )
S. If the edges intersected by S ( say the edge cut set K ) form a matching of G and
the reflection interchanges the end vertices of each edge of K, then the number of perfect
matchings of G equals |det A(G*)|, where G* is the graph as described above, and A(G*)
denotes the adjacency matrix of G*.

Proof By a suitable labelling of vertices of G, the adjacency matrix of G has following
form:

A(G):[A R].

R A

By our assumption, the reflection interchanges each pair of end vertices of the edges in
K. Thus R is represented to be a diagonal matrix. By lemma 1 we have

det[A R”:Idet[A"'R A+RH

MG = R A R A

A+ R 0
= |det[ R A-R H = |det(A + R)||det(A — R)|.

Clearly A + R is the adjacency matrix of G* and A ~ R is the adjacency matrix of G~ as
described above. Hence to prove the theorem we need only to show that

|det(A + R)| = | det(A — R)|.
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Denoted the sets of elementary spanning subgraphs of G* and G~ by ©* and ©7, there is
a natural bijection between ©% and O~ such that two corresponding elementary spanning
subgraphs have the same configuration except the weights of adding loops. Now we
consider the following cases.

Case 1 G* has even number of vertices. Since G is a bipartite graph, both of ©* and &~
have only even cycle except loops. [t is no difficulty to see that the number of loops in
each elementary spanning subgraph is even. Thus any pair of corresponding elementary
spanning subgraphs in ©% and ©~ have the same weights. By lemma 2 this means that

det(A + R) = det(A - R).

Case 2 G has odd number of vertices. Since both of ©% and ©~ have only even cycle
except loops. It is no difficulty to see that the number of loops in each elementary span-
ning subgraph is odd. Thus the weights of any pair of corresponding elementary spanning
subgraphs in ©% and @~ have the same absolute values but different signs. By lemma 2
we have

det(A + R) = —det(4A — R).
Hence theorem 4 is proved.

Note that the above theorem can be used to count the numbers of perfect matchings

for polytopes as well as non-plane graphs. We give the following example of non-plane
graph.

Fig. 3 The graph G*.

Example 5 Suppose that G| is the Petersen graph, V(G,) and E(G,) are the vertex-set
and edge-set of G, and let S(G)) denote the 1-subdivision graph of G, that is obtained
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from G, by replacing every edge of G, by a path of length 2. Since G, has 15 edges,
there are 15 subdividing vertices in V(5(G,)). We denote the set of subdividing vertices
by {i[1 < < 15}. Take two copies of 5(G,), denoted by S(G)) and S(G7), respectively.
Let G be a graph such that V(G) = V(G )UV(G)), E(G) = E(G,)U E(G))U K, where
K = {(1,7)]1 <i <15}, and {i]1 < i < 15}({i']1 < i < 15}) is the set of subdividing
vertices in V(5(G)))(V(S(G7))). 1t is obvious that G is a symmetry connected non-plane
bipartite graph without nice cycles of length 4s, s € {1,2,---}. Hence G satisfies the
conditions of theorem 4. By theorem 4 the number of perfect matchings of G equals
| det A(G*)|, where G* is pictured in Fig. 3. By using computer software-Matlab, we
can get easily that
| det A(G*)| = 6144,

Hence the number of perfect matchings of G is 6144.

Corollary 6 Let G be a symmetric plane bipartite graph without nice cycles of length
4s,s € {1,2,- -}, and there are not vertices lying on the symmetry axis S. If the reflec-
tion interchanges the end vertices of each edge intersected by S, then we have

M(G) = | det A(G*)].

Proof We prove that all edges intersected by S form a matching of G. First we consider
the leftmost edge (u,u’) in the edge cut set K ( edges intersected by S ). Since the reflec-
tion intersecting S interchanges u and u'. If there is another edge (u,w’) incident with
u and intersects S, then there is another edge (u',w) incident with »" and intersects S.
One can see that (u,w’) and (u',w) are crossing, a contradiction. Now we delete (u,u')
from G and consider the leftmost edge of G — (u,u’). Repeating the previous discussion,

we conclude that all the edges crossing by S form a matching of G. Thus the conclusion
follows from theorem 4.

Remark 7 Let G be a plane bipartite graph with a perfect matching M. There is an
linear algorithm to determine whether or not G has a nice cycle of length 4s,s € {1,2,- .-}
( see [12] Algorithm 13 ).

In section 1 we established the relation between the weighted graph G and the Hermite
matrix A(G) ( say adjacent matrix of weighted graph G ). If we change the weights of
all the edges and loops to be 1, we obtain the underlying graph of G. We say a weighted
graph is symmetry if its underlying graph is symmetry and the weights are constant on
the orbit of reflection. G* has edge e and the corresponding edge of G~ is denoted by
e”. Define weight w* := w(e’) of edge e* of G* and analogous we define w™ := w(e™) of
G~. Clearly we have |det A*(w™)| = |det A~ (w™)|, where A* := A(G*). A~ = A(G")
or |det A¥(w*)| = |detA~(w*)]. Where we stand w* for all weights of edges of graph



123

G*. The weight of one perfect matching M is defined to the product of weights of edges
contained in M. We denote the sum of the weights of all perfect matchings of G by M(G).
As pointed out in El?], lemma 1 can be extended to the weighted graphs. Furthermore,

theorem 4 can be extended as follows.
Theorem 8 Let G be a symmetric connected bipartite weighted graph without nice cy-

cles of length 4s,5 € {1,2,---}. If there are not vertices lying on the symmetry plane (
axis ) and all the edges intersecting symmetry plane ( axis ) form a matching K of G, then

M(G) = |det A(G*)],

where G is obtained from G by adding a loop to each vertex in the upper half of G which
is an end vertex of one edge e in K and the weight of the adding loop equals the weight
of edge e.

Corollary 6 can also be extended in a similar way.
Remark 9 In [19] Sachs extended lemma 1 to bipartite graphs with multiple edges which

can also be considered as weighted graph. Thus theorem 8 is also valid for bipartite graph
with multiple edges.
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