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Abstract

In earlier computer -aided studies the permanental polynomials of numerous fullerenes and
benzenoid hydrocarbons were determined. Several relations between the coefficients of the
permanental and characteristic polynomials were then observed. We now demonstrate the
general validity of these empirically discovered regularities and establish a few more.

INTRODUCTION

Graph polynomials were among the most popular objects of research in chemical graph
theory (see, for instance, the monographs [1-4]) and continue to be so until the most

recent days (see, for instance, chapter 3 of the book [5] and the references cited therein).
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No doubt, the most extensively examined such polynomial is the characteristic polynomial
¢(G). 1t is defined as follows.

Let G be a graph on n vertices and A be its (0, 1)-adjacency matrix [1-3]. Hence A is a
square matrix of order n. By I is denoted the unit matrix of order n. The characteristic

polynomial of the graph G is, by definition,
&(G) = $(G,\) = det(A ] — A) (1)
and we will write it in the coefficient form

8(G2) = 3 ae At )
k=0

The importance of the characteristic polynomial lies in the fact that its zeros are just the
eigenvalues of the adjacency matrix, hence the graph eigenvalues, which has noteworthy
quantum -chemical implications (for details see [3, 4]). Special techniques were developed
for the calculation of the coefficients ax of the characteristic polynomial [5], among which
the Sachs theorem plays an outstanding role [6, 7]; see below. From Eq. (1) we see that the
characteristic polynomial is the determinant of a certain matrix, namely of (A7 — A). For
quite some time there is a tendency in chemical graph theory to study graph polynomials
other than ¢(G). This lead to the natural idea to apply some other algebraic operators
to the matrix (AJ — A). The best known such operator is the permanent [8].

Thus, in analogy to Eq. (1), one defines the permanental polynomial n(G) as
m(G) = n(G,\) = per(A ] — A) . (3)

In what follows, in parallel to Eq. (2), we write the permanental polynomial in the
coefficient form

(G, ) = }E biXEk (4)
It seems that the permanental polynomial w;s uconsidered for the first time in the chemical
literature in 1981 by Kasum et al. [9]. The study of analogous objects in the mathemat-
ical literature started not much earlier [10]. Nevertheless, permanents and permanental
polynomials did not attract much attention of chemical graph—theoreticians {11, 12]. This
situation has changed somewhat only recently [13-17]. One of the present authors has
recently developed a computer—aided method for the calculation of the permanental poly-

nomial of molecular graphs [15] and applied it to a variety of benzenoid hydrocarbons
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15) and fullerenes [16]. These studies revealed the existence of several relations between
the coefficients a; and by of the characteristic and permanental polynomials, Eqgs. (2)
and (4). In this work we provide formal proofs of the general validity of the regularities
empirically discovered in [15, 16] and establish a few more.

At this point it is worth noting that both the determinant and the permanent are special
cases of so-called immanants [8]. Consequently, in analogy to Egs. (1) and (3), a whole
class of “immanantal polynomials” is conceivable [18, 19]; these, however, found so far no

chemical applications [19].

THE STRUCTURE-DEPENDENCE OF THE COEFFICIENTS OF
THE CHARACTERISTIC AND PERMANENTAL POLYNOMIALS

The coefficients a,. of the characteristic polynomial can be computed from the structure
of the graph G by means of the Sachs theorem [6). The Sachs theorem is stated and
exemplified in many books [1,3-5,20] and papers [21-26] and therefore we are repeating
its necessary details as concise as possible.
A Sachs graph S is a graph in which all components are isolated edges and/or triangles
and/or quadrangles and/or pentagons and/or hexagons .... Under “isolated edge” is
meant a 2-vertex graph with one edge. Let p(S) be the number of components of the
Sachs graph S, and ¢(S) the number of its cyclic components (triangles, quadrangles,
...). Then the Sachs theorem reads:

ag = Z(,l)p(é‘) 2¢(5) (5)

s

with the summation running over all k-vertex Sachs graphs, that are as subgraphs con-
tained in G .
Bearing in mind the definition of a permanent [8], for the coefficients of the permanental

polynomial one has [9],
be = (=1 TP 29 = (1) T 009 0
s g

Equation (6) is a straightforward generalization of the Sachs formula. It is obtained from

Eq. (3) in the very same way as formula (5) is obtained from Eq. {1). Formulas (5) and
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(6) provide a general connection between the structure of a (molecular) graph and the
coefficients of its characteristic and permanental polynomials, respectively.

Immediate consequences of (5) and (6) are:
g=b=1; aa=b=0; -—a=b=m ; a=b=-2

where m is the number of edges and ¢; the number of triangles. From Eq. (6) it is also
immediately seen that all even coefficients of 7(G) are positive (or zero), whereas all odd
coefficients are negative (or zero). The signs of the coefficients of #(G) follow, in the
general case, a much more complicated pattern.
Consider now bipartite graphs (i. e., the molecular graphs of alternant hydrocarbons).
These possess no odd-membered cycles. Consequently, all odd coefficients in both ¢(G)
and 7(G) are equal to zero. For bipartite graphs the even coefficients of ¢(G) alternate
in sign:

<0 ; a1>20 ; a<0 ag 20 ; ap<0

)

whereas, as already mentioned, the even coefficients of 7(G) are all positive (or zero).

RELATIONS BETWEEN THE COEFFICIENTS OF THE
CHARACTERISTIC AND PERMANENTAL POLYNOMIALS
OF BENZENOID HYDROCARBONS

In this section we assume that the graphs considered are bipartite. Needless to say
that the molecular graphs of benzenoid hydrocarbons are bipartite. We say that a cycle
contained in the graph G is a (4t)-cycle if its size (= number of vertices) is equal to 4¢
for some integer ¢, and, therefore, divisible by 4. If sign is disregarded, then the first few
coefficients of ¢(G) coincide with the corresponding coefficients of 7(G). By comparing
the right-hand sides of (5) and (6) we conclude that the equality |ag:| = by will hold
provided all (2k)-vertex Sachs graphs (of the graph G) have either even or odd number
of components. If, however, there are (2k)-vertex Sachs graphs with both even and odd
number of components, then |as;| < by because in formula (5) these will contribute with
opposite signs (and thus subtract from each other) whereas in (6) they add. Such a

situation happens if there is a (2k)-vertex Sachs graph with a (4¢)-cycle (one component,
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an odd number), because there are other (2k)-vertex Sachs graphs which instead of that
cycle have 2t isolated edges (2t components, an even number). An example is depicted in

Figure 1, where t = 3.

Figure 1. A pericondensed benzenoid system (I) with two inner vertices (marked by
heavy dots); it has Sachs graphs containing a 12-membered cycle (e. g. I, p=4, c¢=1)
as well as Sachs graphs in which instead of the 12-membered cycle there are 6 isolated
edges (e. g III, p =9, ¢ = 0); note that IT has an even whereas ITT an odd number of
components.

The smallest value of k for which the inequality |agi| < by will hold depends on the size
of the shortest (4¢)-cycle in the graph G. Thus we arrive at:
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Theorem 1. Let G be a bipartite graph and g the size of its shortest (4t)-cycle. Then for
k=0,1,...,¢/2-1,
|azk] = bax (7

and |ag| < b, .
Corollary 1.1. If G is acyclic, then Eq. (7) holds for all k.

Corollary 1.2. If G is a cyclic bipartite graph, but does not possess (4t)-cycles, then Eq.
(7) holds for all k.

Catacondensed benzenoid systems do not possess (4¢)-cycles [27] and therefore, as a special

case of Corollary 1.2 we have:

Corollary 1.3. If G is the molecular graph of a catacondensed benzenoid hydrocarbon,
then Eq. (7) holds for all k.

Corollary 1.4. Under the conditions specified in Theorem 1, |ag| = b, — 4¢,, where ¢,

is the number of g-membered cycles in G .

An important special case of Corollary 1.4 is the below result for pericondensed benzenoid
hydrocarbons. Note that these possess (4f)-cycles. The shortest such cycles are 12-
membered, a consequence of three hexagons sharing a commen carbon atom, see [27]
and cf. Figure 1. Therefore for pericondensed benzenoid systems, ¢ = 12. Besides, ¢,
is just the number of internal vertices n;, 1. e., the number of vertices not belonging
to the perimeter [27]. As discussed below, this special case applies rigorously only to
planar benzenoid graphs; it does not necessarily apply, for example, to graphs of toroidal

fullerenes.

Corollary 1.5. If G is the molecular graph of a planar pericondensed benzenoid system
with n; internal vertices, then Eq. (7) is satisfied for k = 0,1,2,3,4,5 whereas |a;s| =
by —4dn;.

The above general results are, of course, in harmony with the examples communicated in
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the paper [15]. Some additional calculations yielded the following:

In the case of phenalenyl, the monoradical Ci3Hy , by = |a,| holds for all even coefficients,
except for the last one. Since the perimeter of Ch3Hy is a 12-membered cycle, b1y — |aja| =
4, as expected.

Triangulene, Cyy )2 , which is a diradical, is a little more interesting. Here, bz —|a;o| = 16
because there are 4 distinct 12-cycles. Furthermore, b1 — |a;6] = 336 (= 84 x 4) because
it can be shown to derive from 9 distinct 16-membered cycles and 75 contributions from
a 12-membered cycle plus two edges. Similarly, bz — |ag0| = 192 (= 48 x 4) comes from
3 20-membered cycles, 30 sets of a 16-membered cycle plus 2 edges, and 15 sets of a
12-membered cycle plus 4 edges.

The most interesting aspect of these results is that it is the middle-sized cycles that make

the largest contribution to by — | -

RELATIONS BETWEEN THE COEFFICIENTS OF THE
CHARACTERISTIC AND PERMANENTAL POLYNOMIALS
OF FULLERENES

The molecular graphs representing the carbon--atom skeleton of fullerenes are non-bipartite
[28, 29]. They contain 12 pentagons (5-membered cycles). If these 12 pentagons are mu-
tually disjoint then we say the respective fullerene obeys the “isolated pentagon rule”
(IPR) or simply that it is an JPR fullerene [28, 29].

If two pentagons are not disjoint then they have an edge in common that is referred to
as an 5,5-edge. Hence the number of 55-edges is equal to the number of pairs of non-
disjoint pentagons. It is easy to envisage that each 5,5-edge implies the existence of an
8-membered cycle (8 = 4¢ , t = 2), see Figure 2. In view of this we denote the number of
5,5-edges by es. Recall that in PR fullerenes, eg = 0, and that otherwise eg > 0.

Using reasoning analogous to that leading to Theorem 1 we obtain:

Theorem 2. Let G be a molecular graph of a fullerene in which es > 0. Then for

k=0,1,...,7 , |ax| = |be| and |as| < bs.

Corollary 2.1. In the case of a fullerene specified in Theorem 2, |ag| = bs — deg (cf.



62
Corollary 1.4).

A noteworthy example of the relation given in Corollary 2.1 is found in the system Cag
(the dodecahedron graph) studied in [15]. Here, calculation gave by = 10215 and ag =
10095 = by — 4 x 30. In fact, Cyy contains 30 8-membered cycles because all 30 of its
edges separate two pentagons.

In non-bipartite graphs a new cause for the non-equality of |az| and b may occur: It
may happen that there is a (2k)-vertex Sachs graph with a (4¢ + 1)-cycle and another
(4t' + 1)-cycle (two components, an even number); in addition to it there will be other
(2k)-vertex Sachs graphs that instead of these cycles have 2t + 2t' + 1 isolated edges
(2t + 2¢' + 1 components, an odd number). [The same situation is encountered with a
Sachs graph possessing a (4t + 3)-cycle and another (4¢' + 3)-cycle, but we will not pursue

this (analogous, but chemically less interesting) case.|

Figure 2. A detail of a fullerene skeleton in which two pentagons are not disjoint; the
respective 5,5-edge is marked by an arrow and the 8-membered cycle induced by the two
pentagons by heavy line.
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Let us focus to /PR fullerenes. These do not contain 8-membered cycles. Their molec-
ular graphs contain disjoint 5-membered cycles and therefore there exist Sachs graphs

containing two 5-membered cycles (t = ' = 1). Then, instead of Theorem 2 we have:

Theorem 3. Let G be a molecular graph of an IPR fullerene. Then for k =0,1,...,9:
lax] = [ (8

and |ar| < byo -

Corollary 3.1. If G is a molecular graph of an IPR fullerene, then, in addition to the
relations (8), we have |ax| = bio — 264 . Recall that 264 = 4 ('7) .

The relations between the first few coefficients of ¢(G) and 7(G) of fullerenes can be

summarized as follows: For I PR fullerenes (es = 0):
|a| = |bk| for k =1,3,5,7,9,11,13 and k = 2,4,6,8
lax| < |bk| for k =15,17,... and k= 10,12,...
For fullerenes with 5,5-edges (es > 0):
lak| = 5| for k=1,3,5,7,9,11 and k = 2,4,6
Jax] < o] for k =13,15,17,... and k = 8,10,12,...

A NOTE ON 4-6 FULLERENES

In addition to “normal” fullerenes (in which the faces are pentagons or hexagons) chemical
graph-theoreticians examined also 4-6 fullerenes (in which the faces are rectangles or
hexagons) [30-33], and their boron-nitrogen analogs [34-36). Indeed, the latter type
seems to have actually been prepared [37].

According to Theorem 1, |a4| = by —4ny , where ny = 6, the number of quadrangles, and
|ax| < by for k = 6,8,10,.... We have made a few observations about the polynomials of
4-6 fullerenes that, in our opinion, deserve to be mentioned here.

First of all, except for a few rare special cases, the rectangular faces must either be isolated

(adjacent only to hexagons) or occur as 1, 2, or 3 pairs where each member of the pair
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is adjacent to the other member of the pair and three hexagons. Thus, almost all 4-6
fullerenes have 0, 1, 2, or 3 pairs of adjacent rectangles. (The exceptions have either 4t
vertices or 6¢+2 vertices for some integer £.) Now, it turns out that for n being the number
of vertices, by—as is equal to 27 n%—378 n+1344 regardless of the number of adjacent pairs.
(The exceptions have a different value of bs —as because they are tube-like structures that
have 8-membered cycles around the circumference of the tube which do not include any
edges of rectangular faces.) However, the individual values of b and a3 do depend on the
number of adjacent pairs. Specifically, each adjacent pair has bg and ag larger by 3n — 26
per adjacent pair than bg and ag for a structure with the same n and all isolated rectangles.
Fitting the 7 data points we have available, it also turns out that bg (all isolated) is a
4th-order polynomial in n, namely, b = % nt— % nd+ % n? — %ﬁn +882. For
structures with adjacent pairs of rectangles, this is modified by adding 3n — 26 per pair.
Thus, we can at least say that the polynomial coefficients encode structural information

about 4-6 fullerenes in a less than obvious way.

A NOTE ON ALL-HEXAGON, TOROIDAL FULLERENES

Euler’s polyhedron closure rule demands that a polyhedron with all hexagonal faces be
toroidal, i. e., that it have a surface of genus 1. Work on these structures was reviewed
a few years ago [38]. Since that time, the permanent has been used to determine Kekulé
structure counts [39], and actual samples have apparently been prepared and isolated [40).
Moreover, large-scale supercomputer simulations [41] have shown that all-hexagon forms
are energetically more favorable than similar forms with topological (pentagon-heptagon)
defects. Thus, the toroidal systems are chemically relevant.

Relationships between a, and b, that hold for planar benzenoids do not necessarily hold
for toroidal benzenoids, at least not in the general case, since certain tube geometries allow
cycles around the tube that cannot exist in planar systems. Kirby [38] has enumerated
and described all the polyhex toroids through Cégg , so all possible systems on < 60 vertices
can be examined individually. However, currently available computer resources limit the
size of systems to 40 vertices. An immediately obvious difference between the toroidal

and planar benzenoids is that all toroids on < 40 vertices except one contain 8-membered
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cycles. Surprisingly, the unique exception is not one of the 40-vertex systems, but a 38-
vertex one, namely, the one designated 19-8-1 in Kirby’s notation [38]. This structure
has |aja| = b2 — 1292 = by, — 4 x 323. Thus, each vertex participates, on average, in
323/38 = 81 12-cycles. All the vertices are equivalent in the sense that they are all
points where three hexagonal faces meet and no vertex need occupy any special place
on the toroidal surface, so it might seem that the number of 12-cycles should be evenly
divisible by the number of vertices. This is not the case because the vertex sites do not
have the local threefold symmetry that internal vertices in a planar benzenoid graph have.
In a planar benzenoid graph, all the 12-cycles are perimeters of a three-ring (phenalenyl)
arrangement whose dual is a triangle. In the toroidal graph, on the other hand, some 12-
cycles encircle the torus and are not the perimeter of any planar arrangement of hexagons.
This effect should disappear when both the tube circumference and the internal torus
circumference exceed 12 edges, but the Kirby a-b-d parameters for which this condition
holds are not readily apparent.

;From drawing the structures of the 7 possible 42-vertex all-hexagon toroids in parallel-
ogram form [38), it appears that five among them contain 8-cycles, and the other two do
not. It is not feasible with available equipment and algorithms, however, to compute the
bg-values to confirm this. Assuming this finding is real, it would be interesting to investi-
gate whether there is anything special about these two structures, and the unique one on
38 vertices, that distinguishes them from the other toroids of the same vertex counts, e.

g., HOMO-LUMO gap, Kekulé structure count, strain energy, etc.
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UNRESOLVED QUESTIONS

The work reported here suggests several questions about the systems considered (and

others):

(1) With today’s desktop computers, the characteristic polynomial for a system of any
reasonable size can be found. The same cannot be said for the permanental polynomial.
Can more efficient algorithms be developed so that permanental polynomials for larger

systems can be studied?

(2) For the systems studied here, can profitable comparisons be made for ax vs. b for

larger k7

(3) The present study treats only benzenoids and three types of fullerenes. For what
other classes of polycyclic aromatic hydrocarbon graphs and cubic graphs might such

comparisons yield unexpected structural information?

(4) What are the limiting torcidal tube diameter and internal torus diameter above which
|a1a| = bya — 4 n;, as it does for planar benzenoids? (For fullerenes, toroidal or otherwise,
4 n; is simply 4n, since all the vertices are internal.) What relation, if any, exists between

these diameters and the Kirby a-b-d notation for defining toroidal fullerene structures?
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