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Abstract

The autocorrelation descriptor is a molecular descriptor encoding both molecular
structure and physico-chemical properties attributed to atoms as a vector. Applica-
tions include QSAR studies and screening of large databases. Using random graphs,
we show that the autocorrelation descriptor may contain highly redundant informa-
tion even if the encoded properties are independent. We show that this shortcoming
can easily be eliminated by centering properties, facilitating subsequent statistical
analysis of the generated data.,

1 Introduction

To computationally analyze large chemical databases with millions of compounds, a vari-
ety of numerical descriptors has been developed. A numerical descriptor is a function that,
given a molecule or an atom as input, outputs numerical data such as molecular weight,
number of atoms, surface area, or atomic charge. A major application are quantitative
structure-activity relationship (QSAR) studies [1], a method to relate the structure of a
molecule to a specific biological property. For QSAR, both descriptors for planar (2D) and
for spatial (3D) molecule representations are used. While a 3D-descriptor usually changes
its values if the molecule shifts to a different spatial conformation, a 2D-descriptor does
not do so, which can be an advantage if the final conformation is not known in advance.
Since a graph can be derived from any molecule, numerous applications of graph theory
on chemistry were published [2, 3]. A topological descriptor is a numerical descriptor
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that 1s computed from the molecular graph whereby hydrogen atoms and their bonds
are usually omitted. Thus, topological descriptors are 2D-descriptors. One of the first
topological descriptors was proposed by Wiener [4] and successfully used to determine
boiling points of parrafin. Several other topological descriptors have been proposed since,
most of which do not account for physico-chemical properties located at atoms or bonds.
The autocorrelation descriptor, first proposed by Moreau and Broto [5], is a topological
descriptor that not only encodes the structure of the molecule but also numerical prop-
erties assigned to atoms. Apart from QSAR, this descriptor has been used to estimate
logP-values [6]-[8], a number related to membrane permeation, for pharmaceutical [9, 10]
and toxicological research [11].

For the autocorrelation descriptor, the molecular structure is represented as a graph G
and physico-chemical properties of atoms as real values assigned to the vertices of G. To
that, let be Dy = {(u,v) | d(u,v) = d} the set of pairs of vertices (u,v) having distance d
(length of shortest path from u to v) and z, a real-value assigned to vertex u. Then

Ai= Yz, (1)

(u,v)EDy4

is the d-distance autocorrelation descriptor of G. As a distance-based function, Ay is
invariant for different labellings of G, hence, (1) can be defined as the autocorrelation
descriptor of the molecule corresponding to G.

In practice, since not all molecular graphs in a chemical dataset have the same maximum
distance, Ay is calculated for a distance d < d* with d* = 5 or d* = 10. For various
physico-chemical properties the vector (A,,...,As) or a set of respective vectors is then
used to describe the molecule.

The name "autocorrelation descriptor’ is a misnomer, (1) is actually a convolution. Still,
we use the former name to be consistent with the literature.

To analyze mathematical properties of the autocorrelation descriptor, we model molecular
structures as random graphs [13, 14]. These are graphs G,, on a fixed set of vertices
V' ={1,...,n} whose edges are selected independently with probability p € (0,1). Thus,
the number of edges is binomially distributed with expectation (;)p To model molecular

structures, we set p = -2; in section 3 so that the expectation of the number of edges
equals the number of vertices n. To model physico-chemical properties, we associate with
each vertex v € V a random variable X,. Hence, the function (1) becomes a random
variable
AiX) = AdX,Grp) = Y. XX, X=(X1,...,X0)
(t,0)& Dy

and Dy is now a random set on the space of random graphs. In particular, D; is the
random set of edges. X is the vector of properties X, attributed to atom u (u = 1,...,n).
To represent the molecular structure only, we set X = 1 = (1,...,1). We assume that
Xi,..., X, are independent and identically distributed (i.i.d.) and independent of Dy,
i.e. independent of the graphical structure.
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2 Moments of A
The moments we deduce for A; will be needed in section 3. Let

1 _J1if (u,v) € Dy
{w)ebad =1 0 else

be the indicator function of {(u,v) € Dy}. Then,

for u#v
E(luu,v)enl}):{g el 3

for random graphs.

The formulae for E(l((u,v)e ) d}) become quickly complicated for d > 1 and yet, a general
formula for all d > 1 is not known [12]. We therefore restrict our analysis to d = 1 for the
rather tedious case E(X) # 0; the simpler case E{X) = 0 can be handled for all d > 0.
Let X1,...,Xs beiid. random variables independent of 1 w)cp,}- The expectation of
A(X) is

E(Al(x)) = E(z X'uXv ? 1((|A,|:)€D1]) ==

. ,[n
E(X1)? Y E('ll(u.u)eﬂll) = ZE(X1)2(2)P (2)
uFv
Let Yi,...,Y, be random variables such that

1. Yy,...,Y, areiid. and independent of 1 yen,}
2. X, Y, are independent for u # v
Note that X, ¥, are not necessarily independent. Then
EAX)A(Y)) = E( 2 XX XY Lwapenn) - 1((1::)513:}) (3)
URIXN]
Since (u,v), (i, §) € D), equality between variables in {u,v} and {z, 7} can only occur for

w =k or v = ky with {ki, k2} = {¢,j}. Also, all variables can be unequal, hence we have

to consider (g) +2 ((f) + (g)) = T cases of which for symmetry reasons 3 have different

expectations. By independence and linearity (3) thus becomes

o n
= (O)E( > X XYY Lwenyy - 1{(;.,150;:)

i f=1
all#

9 7
+2(1)E( 3 X XYY, Lwwen I{(i.v)eDl))

wi=1
i

9 n
+2 (2)E( 3 X XYY 1{(u,v]EU|})

w1
ugn
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=EB(X)E(Y)* ¥ E(luwenn) E(l((é.j)enl})

o
aliy

HE(XY)E(X) E(Y) 3 E(iumenn) E(Lgmenn)

i

allg

REXYY Y E(1{uumenyy)
uFv

= E(X) E(Y) 4 (Z)pi +4E(XY) E(X) E(Y) - 3!(;!)?3:

+2E(XY) -2 (;‘)p,,
= UE(X)? E(Y)? (’;) P2+ UE(XY) E(X) E(Y) (g)pi

HE(XY) (;)p (4)

Note that this result is valid for independent random variables X;, Y; as well as for X; = Y;.

3 Correlation Analysis of A,

We set p = % so that by (2), E(A;(X)) = 2E(X)*n. By (4) and an elementary

calculation, we get
2 3
BAOAY)) = ... = 4BXPBY =" (1- 3) )

and for the variance

Var(A(X)) = ... = 4E(X)" n"—_al +4 ’f 3 (6Var(x) E(X)" + Var(X)?)

n

—4% (BE(X)" + 10Var(X) B(X)? + Var(X)*) - (2B(X)*n)"

In particular,

Var(4,(1)) = 4" (1—%)

n—1
Finally, the correlation of interest is
E(X)2E(Y)? Var(A(1))

p(A(X), A)(Y)) = ‘/VOJ‘(AI(X)) Var(A(Y))

by (5). Since
Var(A;(X
solim, —ME(( )234 D _ var(a,(1))

for Var(X) constant, we get

lim mP(Al(X),Al(l)) =1

E(X)~+
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and

p(A(X), A(Y)) = 1

lim
E(X),E(Y) %0
This means that A, contains highly redundant information for large values of |E(X)]
and [E(Y)| even if properties X and Y are independent. Also, A; contains almost only
structural information in this case, all physico-chemical information on the vertices is lost
as |E(X)| tends to infinity.

To show the rate of
growth, we have plotted
p(A(X), A1(1)) as a fune-
tion of |E(X)| for n = 5
(dashed line), n = 10 (dot-
ted line) and n — oo (solid
line) and Var(X) = 1.
From the chart, we see that
for all reasonable molecular
sizes the autocorrelation
descriptors of property X
and of the molecular struc-
ture are strongly correlated

for E(X) > 3.

Centered properties

As we have seen for d = 1, the correlation is 0 for E(X) = 0 or E(Y) = 0. This result is
easily verified for all positive distances.
Without loss of generality, assume that E(X) = 0 and di,ds > 0. For G, ,, by (2)

Cov(Ag,(X), A (Y)) = 3.3 Cov( XX (umena, ), Yi¥ilasiens,) )

uU i
=Y Y E(X.X.Y.Y)) E (h(mv)engl}1{(1,j)endz}) (6)
uv g5

We consider two cases:
L. If X;,Yj (4,5 =1,...,n) are independent then Cov(A4, (X), Az,(Y)) =0

2. Assume X; =Y, fori=1,...,n and d; # d;. This implies that one variable out of
u,v,1,j is unequal to the others. Without loss of generality, let be u # v,4,j. Then
covAy, (X) Ay, (Y) = 0 by (6).

Thus, we have shown that

L p(Ag (X), Ag,(Y)) = 0 for all dy,dy > 0if X;,Y;(¢,5 = 1,...,n) are independent
and E(X) = 0. Note that E(Y) may be different from zero. Of course, this result
is also valid for Y = 1.

2. p(Ag(X), Ag, (X)) = 0 for all d; # dy and E(X} =0.
3. p(A(X), A1 (Y)) = 1forn — oo and E(X), E(Y) — oo or E(X) — 4oc0, Y =1.
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4 Discussion

For a simple probabilistic model of molecules we studied correlations of the autocorre-
lation descriptor. It turned out that A,(X) and A,(Y) are strongly correlated even for
independent properties X and Y if [E(X)| and |E(Y)| are large. In this case, 4,{X)
also correlates with the molecular structure as expressed by A;(1). A;(X), A,(Y), and
Ai(1) become linearly dependent as n tends to infinity. However, QSAR studies with
highly correlated descriptors are impractical since most physico-chemical information is
lost and the influence of different properties can hardly be separated. This cannot be
overcome by factor analysis since factors are linear combinations of all descriptors. If
however properties are centered (we call a property X centered if £(X) = 0) all au-
tocorrelation descriptors are uncorrelated and we can separate the influence of different
properties, including the topology of the molecule. Properties should therefore always be
centered before the autocorrelation descriptor is applied to facilitate subsequent statistical
analysis.

As a drawback, the random graph model we used does not properly reflect the structure
of molecules in a typical data set. For instance, the number of vertices in G, , is constant,
also G, is not necessarily planar or even connected. On the other hand, any chemical
graph can be conceived as a realization of some random graph and numerical simulations
we carried out on a chemical data set confirmed our results. Nevertheless, a more general
model should be developed for a more precise analysis.
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