communications in mathematical no. 44, October 2001

m @‘l'c h MATCDY (44) 93 - 102 (2001)

and in computer chemistry ISSN 0340 - 6253

GENERATION AND GRAPH-THEORETICAL PROPERTIES
OF C4-TORI

Mircea V. Diudea and Ante Graovac®

“Faculty of Chemistry and Chemical Engineering,
Babes-Bolyai University, 3400 Cluj, Romania
"Rudjer Boskovic Institute, 10000 Zagreb, Croatia

Abstract. Toroidal networks are generated as rotagraphs and some of their graph
theoretical properties are described.

INTRODUCTION

Numerical characterisation of cyclic molecular structures is a task more difficult in
comparison to the evaluation, say, of distances in acyclic compounds. The difficulty is due to
the existence of more than one way for joining two points, i and j. Some works in this respect
the reader can consult refs. [1-3] We limit here to the distance-related detour and Cluj-detour
descriptors, the introduction of which needs some graph theoretical background.[4]

Let G =(V, E) be a connected graph, with | | 4 ‘ vertices

and |E| edges. A walk w is an alternating string of vertices and edges: wy, = (vy, ey,
¥2, €2, vy Vel € V), Wity i) € E(G)and m 2 n - 1.

Set V(win) = {¥1, V2. ..., Yo, ¥a} the vertex set and E(w,,) = {ey, ez, ..., €m.1. €5 } the

edge set of the walk wyp.

Dedicated to Professor A. T. Balaban on his 70" anniversary, in appreciation of his bright
contribution to Chemical Graph Theory.
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The length of a walk, I(wy,) = |E(w|,..)| 2 |V(w|,.) - 1, equals the number of its
traversed edges. Revisiting of vertices and edges is allowed. The walk is closed if vy = v, and
is open otherwise.

A path p is a walk having all its vertices and edges distinct: v; # v, (Vip, ¥i) # (Vjor, V)
for any 1 <i <j sn.

As a consequence, revisiting of vertices and edges, as well as branching, is prohibited.
The length of a path is l(py,,) = |E@ia) | = | Vipin) |- 1. A closed path is a cycle ( circuit).

A terminal path tpy, , is the path p = vy, €5 v2, ...,v, that is no more a path for any
added vertex v € V(G) such that (v, v¢) € E.

A path is Hamiltonian if n = IV(G)l . A Hamiltonian path visits once all the vertices in
G. If such a path is a closed one, then it is a Hamiltonian circuit.

The distance, dy, is the length of a shortest path joining vertices v; and v; :

dj = min l(py); otherwise djj = oo The ser of all distances (i.e., geodesics) in G is
denoted by D(G).

The detour, &, is the length of a longest path between vertices v; and v; :

; = max I( py); otherwise & = eo. The set of all detours in G is denoted by A(G).
The square array that collects the detours in a graph is called the detour matrix A: [5-11]
IAJU—={8” » g 55 (M
0 ifi=j

where e, is the number of edges separating the vertices i and j on the longest path p;;.

The Cluj Fragments CF [12-14] represents the set of vertices defined by relation:
CF,,,={veV(6);d(G,),, <d(G,),,; pe AG)} )]

where G, = G - p is the spanning subgraph resulted from G by deleting the path p; (except its
endpoints). d(Gp) denotes the topological distance measured in G, and A(G) has the above
mentioned meaning.

The set CF;;p represents connected subgraphs (i.e., fragments) in G, referred to i and

related to j and path p.
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In the above definition (eq 2) the path p plays a central role in selecting the fragments.
In cycle-containing graphs, more than one path could join the pair (i) thus resulting more
than one fragment referred to #, so that we define the nondiagonal entries [UM];; in the Cluj

matrix as the maximum cardinality of the sets defined by eq 2

[UM]; ; =max|CF; ; ,,| 3)
4

where M = CFA (Cluj-Fragmental-Detour). The diagonal entries are zero.
When pe D(G), a similar definition leads to CFD (Cluj-Fragmental-Distance) matrix. The
above definitions hold for any connected graph. The Cluj matrices are square arrays, of
dimension N x N, usually unsymmetrical (excepting some symmetric regular graphs).
In trees, CFA and CFD, are identical, due to the uniqueness of the path joining
the pair (i,).
Figure 1 illustrates the construction of CFA matrix.
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FIGURE 1. Construction of Cluj-Fragmental-Detour matrix
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An interesting property is shown by the matrix CFA. Let consider the vertices 8 (of
degree 1) and 5 (of degree 2) in Gy, Figure 1. The vertex 8 is an external vertex (with a
terminal path ending in it) while the vertex 5 is an internal one (usually a terminal path not
ending in it). An external vertex, like 8, shows all its entries in Cluj matrix equal to 1 (see
Figure 1). The same entries are shown by the internal vertex 5. This unusual property is called
the internal ending of all detours joining a vertex i and the remaining vertices in G. Such a
vertex is called an internal endpoint. [12] There exist graphs with all the vertices internal
endpoints. As a consequence, their detours are Hamiltonian paths. This kind of graph we call
Sfull Hamiltonian detour graph, FHA.[12] As a consequence, the index calculated as the half

sum of entries in the symmetrized CFA matrix, I(CF 4) reaches its minimum value:

I(CF4) = [;} = min = H4 @

Thus, I{CFA) counts in FHA just the number of all vertex pairs, therein joined by
Hamiltonian detours. A related property is shown by the detour matrix.[3,15] There exist
detour saturated graphs, for which the elements of the detour matrix are maximal. It comes
out that their detour index is maximal among the graphs of the same size. Such graphs show
the same detour matrix as that of the complete graph having the same number of vertices and,

of course, the maximal longest paths are Hamiltonian paths.

RESULTS AND DISCUSSION

In a previous paper, Diudea et al. [12] found that a series of cyclic structures obey a
same rule in calculating the parameters given in Table 1: number of vertices v, number of
edges e, detour degree sequence ADS (i.e., the sequence of number of vertices mutually lying
at a given length of detours), detour number w (i.e., the half sum of all entries in the detour
matrix), number of Hamiltonian detours HA , entry-type in Cluj matrix [CFAJ;; and the index
I(CF A).

The series starts by the simple (z-membered) cycles C, , continues with stripes S, ,
goes further
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Cs Sq

to tubes TU, ;; and necessarily reaches the single-wall tori T,. ..

TUs,12.1,c4 Te12.1.c4

TABLE 1. Structural and Detour Data in Cycles C,, Stripes S, and Tubes TU..,

Graph v e ADS w H4 [CFA);  KCF4)
C3 3 3 0.3 6 3 1 3
C4 4 4 024 16 4 1 6
cs 5 5 0.055 35 5 1 10
c6 6 6 00366 63 6 1;2 24
S3 6 9 0.0.15 75 15 1 15
S4 8§ 12 01216 184 16 1;2 64
S5 1015 0045 405 45 1 45
S6 12 18 0045 696 36 1;2 156

TU; 9 15 0036 288 36 1 36

TU,, 12 21 0.0.66 726 66 1 66

TU;s 15 27 00105 1470 105 1 105
TU,e 18 33 0053 2601 153 1 153
TU,; 12 20 03036 696 36 12 156
TU;; 16 28  056.64 1744 o4 1;2 288
TUss 200 36 090100 3520 100 ;2 460
TUse 24 44 0132144 6216 144 1;2 672
TUss 15 25  00.105 1470 105 1 105
TUsy 20 35 00190 3610 190 1 190
TUss 25 45 00300 7200 300 I 300
TUs, 30 55 00435 12615 435 1 435
TUss 18 30 0.72.81 2529 81 152 369
TUss 24 42 0132144 6216 144 1:2 672
TUss 30 54 0210225 12405 225 1;2 1065
TUse 36 66 0306324 21744 324 32 1548
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TOROIDAL NETWORK GENERATION

Let k be a point on a circle of radius R and copy its image » times by moving it
around the circle. Considering both the images and joining edges, an n-membered cyclic
graph is thus obtained. Extend now k to a graph G; and do the same. The resulting graph is a
polygraph and the circulant Gy is called a monomer graph, by analogy with the chemical
polymerisation process. Since the monomer moved on a circle the polygraph is called a
rotagraph [16] and is symbolised as:

@, =w,(G,X) (5)

where X is the set of edges joining Gi with its image in position k+1, Gi,;. The same can be
true for G ;.

Assume G is of radius r < R, and centred on that circle (Figure 2). If at least one point
of G is located out of the plane of circle, the rotation object can be enclosed in a toroidal

envelope.

FIGURE 2. Construction of a toroidal surface

A toroidal surface can be drawn by using the well-known relations:
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x =cos(0)(R+ rcos ) ()
¥y =sin(0)}(R + rcos @)

z=rsing

Let G be a c-membered cycle, and let |X|=|V(G)|. The rotation object is now a
polyhedral (single-wall) torus, tiled by quadrilaterals (see the title of paper, that includes C; —
the square-like boundary of the polyhedral torus). The problem can be shifted from 3D (i.e.
generation of a network included in a torus) to 2D: covering a toroidal surface.[17] At that

stage, the genuine length of r and R is not a matter.

A polyhedral torus is completely defined by two topological parameters: ¢ —
membering of the circulant G and n - membering of the large circle (i.e., the number of
monomer units). In the symbol thus designed: T, the joining edge set X is omitted (see eq
5). Note that the two parameters can be interchanged. The name of the objects coming
through this paper will be complicated, as a necessity to distinguish appearing isomers. The

constitutional count will be presented below.

In case of single-wall tori, the vertex degree is 4. When the circulant G is a crown, the
resulting rotation object is a double-wall torus. In such a network, each point of a toroidal
layer is joined with its image in the neighbour layer. In double layer tori, d = 5 while in multi-
layer tori, the network vertices have d = 6. A multi layer torus is symbolised by T, , ¢ with s
being the number of layers (stratus — in Latin). We stress here that the objects generated by
the above procedure, enclosable in a toroidal surface, are regular graphs of degree 4, 5 and 6,

respectively. In the following, some mono- and multi-layer tori are illustrated:

Ta20,1,ca(a) Ta20,1.c4 (b)
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Ts202.04 (2) Ts202,c4 ()

Ts123.c4 (b)

By cutting the joining edges between two images of G the open structure is, of course,
a tube:

TUg 12304 (a) TUs 12,304 (b)
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In studying tori, we limit here to find a basic rule, if any, that allows the calculation of
detour-related parameters in toroidal networks and related structures. The rule comes out from

the constitutional data:
number of vertices:  v(T')=|V(T)| = cns
number of edges: (T )=|E(T)| = cnsd /2

In single-wall, polyhedral tori T., (with s = | and d = 4) the following rules hold
(Table 2). Tubes and stripes also obey these rules.

TABLE 2. Common properties of tori, tubes and stripes.

Tori (a); ¢ orn=odd Tori (b); ¢ orn =even
structure is a FHA graph structure is a next- FHA graph
entries in Cluj detour matrix are all 1 entries in Cluj detour matrix are 1 and 2
Number of Hamiltonian Detours Number of Hamiltonian Detours
v
HA=v(v—l)/2=(2J HA = (v/2)

Detour Index (ie., the length of all Detour Index (i.e., the length of all detours)

Hamiltonian detours)
= HA =D =12 w=HA (v—1)+ (HA —\[HA )(v—2)
v -Sv+4)/4

Cluj Detour Index Cluj Detour Index

H(CFA)=HA=v(v—-1)/2 I(CFA) = HA+ 22 (HA - JHA)
=5HA-2v=v(5v-8)/4

Tubes (as resulted form tori) Stripes
v=cn; e(TU)=cnsd /2—cs =2en-¢ S, (v =2n;e = 3n)
¢ =odd; rule (a) n = odd; rule (a)

¢ =even; rule (b) n = even; rule (b)

At the end, some data for tori are given in Table 3. It can be seen that they are
either FHA or -next FHA graphs.
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TABLE 3. Structural Counts and Detour Parameters in Tori T,

Graph v E ADS w HA [CFA); KCFA)
Ty 9 18 0036 288 36 1 36
Ty 12 24 0066 26 66 1 66
Tys 15 30 0.0.105 1470 105 1 105
Tas 18 36 0.0.153 2601 153 | 153
Taa 16 32 0.56.64 1744 64 1;2 288
Tys 20 40 0.0.190 3610 190 1 190
Tas 24 48 0.132.144 6216 144 152 672
Tss 25 50  0.0.300 7200 300 | 300
Tse 30 60 0.0435 12615 435 1 435
Tes 36 72 0.306.324 21744 324 152 1548
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