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Looking back, I think that there may be some truth in the
motto we had on the wall of our laboratory: “For weaker

characters, difficulties provide opportunities for excuse;
for stronger ones, they are challenges stimulating efforts

to overcome them.”

A. T. Balaban [1]

Abstract. The Balaban index, Balaban-like topological indices (the complement
Balaban index, the Harary-Balaban index, the quotient Balaban indices of the first and
second kind), their variable counterparts, and vertex- and edge-connectivity indices are
used in the comparative study of the structure-motor octane number modeling.
Variable indices produced slightly better linear models than fixed indices. The best
models obtained are quadratic models with the Harary-Balaban index and the quotient
Balaban index of the second kind. All models found in the literature, but the model
based on the Wiener number, are much poorer than models produced in the present
study.

*Dedicated to Professor Alexandru T. Balaban on the occasion of his 70th anniversary.
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INTRODUCTION

There are more than 3000 experimental and theoretical molecular descriptors available
in the literature [2]. Among the theoretical descriptors there is a large class of graph-
theoretical descriptors called topological indices [3,4]. A topological index is a single number
that is used to characterize the graph corresponding to a molecule [5]. In the vast class of
topological indices only a few are used successfully in the quantitative structure-
property/activity relationships (QSPR/QSAR) [6]. Or as Milan Randi¢ is fond of saying “All
descriptors are equal, but some are more equal than others” paraphrasing George Orwell’s
well-known quote from “Animal Farm”.

It appears that practitioners of the empirical QSPR/QSAR modeling are rather skeptical
about the use of topological indices [7]. This is remindful of the attitude of organic chemists
towards the quantum chemistry during its early days. However, a recent work by Lahana and
co-workers [8] convincingly demonstrated the power of topological indices in the structure-
property-activity modeling and predicting new drugs. These authors described a rational
design of immunosuppressive peptides without relying on information regarding their receptors
or mechanisms of action. Their design strategy uses a variety of topological indices and shape
descriptors in combination with an analysis of molecular dynamic trajectories for the
identification of potential drug candidates. Their approach started from 27 descriptors such as
molecular volume, lipophilicity, the connectivity index [9], the Wiener index [10], a number of
indicator variables (the number of carbon atoms, the number of hydrogen atoms, the number of
methyl groups, the number of amino groups) and the Balaban index [11]. Statistical regression
analysis showed that several of descriptors correlated with each other (the correlation
coefficient being greater than 0.75). This allowed a reduction of the number of descriptors
used to differentiate between active and inactive peptides. Thirteen independent descriptors
were used as static filters to screen a virtual combinatorial library. The Balaban index also

appeared in this set of thirteen descriptors.
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Lahana and co-workers generated a virtual combinatorial library for the peptides of the
general form RXXXRXXXXY with seven variable positions. Use of 35 amino acids, 20
natural and 15 unnatural, leads to 357 combinations - 64 billion compounds, well above the
present computing power. All the amino acids were characterized by means of their
physicochemical properties (lipophilicity, acidity, aromaticity, etc.) and also by topological
indices. The above number of compounds in the library was reduced to 6" (279,936
compounds) by taking into account lipophilicity distribution, considered critical for the activity
studied. Screening the library of 279,936 compounds, using two types of filters: static and
dynamic, resulted in the identification of 26 peptides satisfying all constraints. Biological
activity of these peptides was tested in a heterotopic mouse heart allograft model. The
molecule predicted to be the most potent displayed an immunosuppressive activity
approximately 100 times higher than the lead compound.

The above work vindicate those who like Basak and his group [e.g.,12-15] have used
consistently the Balaban index and its variants in the set of descriptors they employed in their
work. The Balaban index, therefore, appears to be an important topological index and is
consequently integrated in a number of computer programs for calculating topological indices
such as POLLY [16], CODESSA [17], TAM [18], etc. Balaban himself and his former Ph.D.
student (now Dr.) Ivanciuc also prepared computer program for calculating his index for
heterosystems [19].

The aim of this report is two-fold: (i) to see the behavior of the Balaban-like indices
regarding the weights of outer and inner bonds in alkanes and (ii) to compare structure-
property models based on different Balaban-like indices. The property considered will be the
motor octane number. This property is used because it has also been employed by Balaban in
his early structure-property studies using his index.

In this paper we will use by choice graph-theoretical concepts and terminology [3,20].
Since in this paper we will be concerned only with alkanes, they will be represented by
hydrogen-depleted trees. In Figure 1 we give as an example a tree representing 2,3-

dimethylhexane.
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(i)  2,3-dimethylhexane
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(ii) Labeled hydrogen-depleted tree
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FIGURE 1. A labeled tree T representing the hydrogen-depleted

carbon skeleton of 2,3-dimethylhexane.

DEFINITION OF THE BALABAN INDEX

Randi¢ introduced 25 years ago [9] an index he called the branching index, denoted by
%, that was soon after renamed into the connectivity index [21] and recently into the vertex-
connectivity index [22,23] after a connectivity index related to graph-edges, the edge-
connectivity index, was proposed [24]. The vertex-connectivity index was popularized by Kier
and Hall [25,26] and has found a considerable use in QSPR and QSAR [3.4,6]. The vertex-
connectivity index is given by:

x =2 [dv) dv)1*? (1)

edges
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where d(v,) is the degree of a vertex v..

Balaban has shown that the vertex-connectivity index is associated with the vertex-
adjacency matrix of a (molecular) graph [11]. Sum of elements in each row of the vertex-
adjacency matrix is equal to the degree of a vertex, that is, elements in the i-th row give d(v,).
Thus, one can straightforwardly obtain the vertex-connectivity index from the vertex-adjacency
matrix.

The vertex-adjacency matrix A of a labeled connected graph with V vertices is the V x

V matrix whose elements are defined as:

(A), = Lif verli(;ﬂs iand jare adjacent 2)
Ootherwise

Estrada [24], when he introduced the edge-connectivity index, denoted by €, used

implicitly Balaban's idea. He used the edge-adjacency matrix A [3] that defined as:

(CA). = {I if vertices i and j are adjacent 3)

* |0 otherwise

The edge-connectivity index is given by:

e=Y [die) dee)]*’ @

adjacent
edges

where d(e) is the degree of an edge e;.

Sum of elements in each row of the edge-adjacency matrix is equal to the degree of an

edge, that is, elements in the i-th row give d(e,). Thus, the edge-connectivity index can be

obtained simply from the edge-adjacency matrix. The edge-connectivity index has also found

use in the structure-property-activity modeling [22,23,27-31].
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Calculations of the vertex-connectivity and edge-connectivity indices, using the Balaban
algorithm, for a tree representing the carbon skeleton of 2,3-dimethylhexane are shown in
Table 1 and Table 2.

If one uses some other matrix rather the vertex/edge-adjacency matrix we can obtain an
index that would formally resemble the vertex/edge-connectivity index. This was idea that
guided Balaban to propose his index [11]. He used graph-theoretical distance matrix [32]
instead of the vertex-adjacency matrix and obtained a distance-based connectivity index he

called the average distance-sum connectivity and denoted by J:
" 05
J=F Z (d; d} (%)
edges
where d,’s are the distance-sums (or distasums, for brevity [6]).

TABLE 1. Calculation of the vertex-connectivity index Y for a tree representing 2,3-
dimethylhexane given in Figure 1.

123 4 5 6 7 8
i o1 000 00 0] dwet
» |1 01 00 0 1 o di¥)=3
s lo 10 1 0 0 0 1 d(vy)=3

AL 4 |0 0 1 0 1 0 0 0 d(vg)=2
s |ooo 1 01 0 0 d(vs)=2
6 o oo o1 0 0 0 d(ve=T
7 1o 1 00 0 0 0 o0 d(vy)=1
s oo 1 0000 0 d(vgi=1

% =3 (1-3y05 4 (3.3) 054 (3.2) 054 (2:2y054 (2.1)05 = 3.6807
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TABLE 2. Calculation of the edge-connectivity index ¢ for a tree representing 2,3-
dimethylhexane given in Figure 1.

1.2 3 4 5 6 7_
110 1.0 0 0 1 0 d(e))=2
2 1 01 0 0 1 1 d(ey)=4
3 /0 1 0 1 0 0 1 d(e3)=3

Ex_4 [0 0 1 0 1 00 d(eg=2
s |0 0 o0 0 0 0 d(es)=1
6 1 1 0 0 0 0 d(eg)=2
710 1 1 0 0 0 d(ey)=2

€=3(24)05+(22y054 43y05+ 3:2)05+ (2.1y03 = 3.3729

Distance sums can also be viewed as distance degrees [33]. F is given by:
F=E/(u +1) (6)

where E is the number of edges in a molecular graph and p is its cyclomatic number which is
equal to the minimum number of edges necessary to be removed from a polycyclic graph to
convert it to a related acyclic graph [34]. Consequently, F=E for acyclic graphs. Since for
isomeric acyclic graphs F=constant, the Balaban indices can be computed for isomers using the
following simple expression and remembering that the number of number edges needs to be

taken into account if non-isomeric acyclic structures are considered:

J=3 d d)* ™

edges

Note that the distance matrix D of a labeled connected graph is a symmetric V » V

matrix whose elements are defined as [3,6,32]:
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D)y =

i

{[“ ifis] ®

0ifi=j

where £, is the length of the shortest path (i.e., the minimum number of edges) between the
vertices i and j.

In Table 3 it is exemplified the computation of the Balaban index for a tree given in

Figure 1.

TABLE 3. Calculation of the Balaban index J for a tree given in Figure 1.

1 2 3 4 5 6 7 8
t o1 23 45 2 3] a=2
2|1 01 2 3 4 1 2 dy=14
32 101 2 3 21 d=12

IR EEEEREE de=14
s |4 321 001 43 d18
6|5 4 3 210 5 4 de=24
71212 3 45 0 3 d=20
8321 23 4 3 0] dels

T=220:14y95+ 2 (14-12)05 4 (12:18y 05+ (14-18) 05 + (18.24)03
= 0.4530

The Balaban index has many nice properties such as a very low degeneracy, an elegant
extension to heterosystems and applicability in the QSPR/QSAR modeling [1,8,11,19,33].
However, there is one problem with the Balaban index. Unlike the connectivity index it gives
greater weights to the inner (interior) CC bonds and smaller weights to the outer (terminal) CC
bonds of an alkane. This appears to oppose intuitive reasoning that the outer more exposed

bonds should have greater weights than inner bonds because the outer bonds are associated
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with larger parts of molecular surface and consequently are expected to make a greater
contribution to physicochemical properties. Because of this observation we investigated the

behavior of the Balaban-like indices regarding the weights of outer and inner bonds.
BALABAN-LIKE TOPOLOGICAL INDICES

Balaban in his seminal paper [11] on the distance-sum connectivity index introduced a

procedure which is quite general for deriving new indices: Any Balaban-like topological index
(BTI) can be obtained using row-sums r, and 1 of a given matrix in the inverse square root

algorithm making contribution (1';1'])*"5 for the edge i-j.

BTI=F Y (r,r)"* ©)

edges

The use of F for acyclic, isomeric and polycyclic structures is discussed above.
Based on this procedure, a whole family of Balaban-like topological indices can be
generated. In this sense the vertex- and edge-connectivity indices are also Balaban-like

topological indices. Here we will report on several novel Balaban-like indices.

Index Based on the Complement of the Distance Matrix
The complement of the distance matrix, introduced by Randi¢ [35], is a symmetric V x

V matrix, called the distance-complement matrix and denoted by °D, that can be simply

obtained from the distance matrix. The distance-complement matrix elements (CD)ij can be

expressed in terms of the distance matrix elements (D)ij:

“D), ={v_(D)" o (10)

0 ifi=j
The corresponding index we call the complement Balaban index and denote it by “J.

Randi¢ and Pompe in their recent paper called this index the reversed Balaban index [36]. In
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Table 4 we give as an example the computation of the complement Balaban index for a 2,3-

dimethylhexane tree given in Figure 1.

TABLE 4. Calculation of the complement Balaban index “J for a tree given in Figure 1.

12 3 4 5 6 7 8 N
1 0 7 6 5 4 3 6 5 =36
) 7 0 7 6 5 4 7 6 15=42
3 6 7 0 7 6 5 6 7 13=44
‘p. 4 5 6 7 0 7 6 5 6 14=42
5 4 5 6 7 0 7 4 5 rs=38
6 3 4 5 6 7 0 3 4 rg=32
7 6 7 6 5 4 3 0 5 r7=36
g |5 6 7 6 5 4 50 rg=38

7 =2 (36-42y05 + 2 (42.44)05 4 (44.38)0-5 4 (423805 4 (383205
=0.1761

This index, unlike the Balaban index, gives in accordance with intuitive reasoning
greater weights to the outer (terminal) CC bonds and smaller weights to the inner (interior) CC

bonds of alkanes.

Index Based on the Reciprocal Distance Matrix
The reciprocal distance matrix, denoted by 'D, was introduced independently by Plav§i¢

et al. [37] and Balaban er al. [38]. It is a symmetric V x V matrix that can be simply obtained

from the distance matrix D by replacing all distance matrix elements (D), by their reciprocals:

. 1/(D); ifi#j
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The reciprocal distance matrix has been used to generate the Harary index in the same
way as the Wiener index is generated from the distance matrix [5] and is so named in honor of
Frank Harary, an important contributor to graph theory and chemical graph theory.

The corresponding index we call the Harary-Balaban index and denote it by 'J. Randi¢
and Pompe called this index the Harary-connectivity index [36]. In Table 5 we give as an
example the computation of the Harary-Balaban index for a tree given in Figure 1.

It can be easily seen that the Harary-Balaban index gives also in accordance with
intuitive reasoning greater weights to the outer (terminal) CC bonds and smaller weights to the

inner (interior) CC bonds of alkanes.
Index Based on the Quotient Matrix D/D

The quotient matrices have been introduced by Randi¢ [39] and used by Plavii¢ er al.

[40]. The quotient matrix D/°D is a symmetric V x V matrix that can be simply obtained from

the elements of the distance matrix (D)ij:

(DI'D), = {(D)”N o o (12)

0 ifi=j

This matrix is used to generate the Balaban-like index denoted by J’ that we call the
quotient Balaban index of the first kind. In Table 6 we exemplified the computation of the

quotient Balaban index of the first kind J' for a tree given in Figure 1.
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TABLE 5. Calculation of the Harary-Balaban index 'J for a 2,3-dimethylhexane tree
given in Figure 1.

1 2 3 4 5 6 7 8

1o 1 05 033 025 02 05 033] r=3.12
211 0 1 05 033 0251 05 r,=4.58
3105 1 0 1 05 03305 1 1;=4.83
-4 (03 05 1 0 1 05 03305 r,=4.17
51025 03305 1 0 1 025033 | r5=3.67
6102 025033 05 1 0 02 025| rE=273
7105 1 05 033 025 02 0 033 | =312
81033 05 1 05 033 025 0330 13=3.25

T=2(3.12-458)05+ (4.58 - 4.83) 054 (4.83 - 41705
+(4.83-3.2505 4 (4.173.67) 95+ (3.67-2.73) 03
=1.7885

This index has lost the nice feature that had the previous two Balaban-like indices: It
gives similarly to the original Balaban index counterintuitively greater weights to the inner

(interior) CC bonds and smaller weights to the outer (terminal) CC bonds of alkanes.
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TABLE 6. Calculation of the quotient Balaban index of the first kind J’ for a
2,3-dimethylhexane tree given in Figure 1.

1 2 3

033 0.14 0
DfD=

1.67 1 0.6

00 N1 A W B W N -

4

0 1.14 033 06
1.14 0 0.14 0.33

0.14

06 033 014 0

1 06 033 0.14
033 0.14
033 0.14 033 06
_0.6 033 0.14 033 06

5

1
0.6
0.33
0.14
0

1

6
1.67
1
0.6
0.33
0.14
0
1.67
1

7 8
033 06 |
0.14 033
0.33 0.14
0.6 033
1 06
1.67 1

0 06

06 0 ]

Y =2(4.68-270%5+ (2.70 - 2.03) 05+ (2.03 - 2.49)0:5
+(2.033.61) %9+ (2.49.3.82) 05+ (3.82.6.41y05

=2.3327

Index Based on the Quotient Matrix ‘D/D

r|=4.68
1'2=2.70
r3=2.03
l'4=2.49
1'5=3.72
l'6=6.4l
r7ﬂ.68
15=3.61

The quotient matrix “D/D is a symmetric V * V matrix that can be simply obtained from

the elements of the distance matrix (D)ij:

DDy, = {(\)H (D); -1

ifisj
ifi=j

(13)

Therefore, the elements of the quotient matrix “D/D can be obtained from the elements

of the reciprocal distance matrix 'D:

(D/D), =V (D), - 1

(14)
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However, the simplest way of constructing the quotient matrix “D/D is by taking the reciprocal

values of the elements of the quotient matrix D/°D:

(‘DfD)iJ. = II(D.“D)i]. (15)

The quotient matrix “D/D is used to generate the Balaban-like index denoted by J” that
we call the quotient Balaban index of the second kind. In Table 7 we exemplify the
computation of the quotient Balaban index of the second kind J” for a 2,3-dimethylhexane tree

given in Figure 1.

TABLE 7. Calculation of the quotient Balaban index of the second kind J”

for a tree given in Figure 1.

1 2 3 4 S5 6 1 8
1o 7 3 1671 06 3 167] r=179
217 o 7 3 1671 7T 3 1,=29.67
513 7 0 F @8 1613% 7T 1;=31.67
‘p/Dp= 4 |167 3 7 0 7 3 1673 1,=2633
S|l1 1673 7 o0 7T 1 167| =233
6lo6 1 1673 7 0 06 1 re=14.87
713 7 3 167 1 06 0 167 17=17.93
811673 7 3 1671 1670 rg=19.00

7'=2(17.93-29.67)05+ (29.67 - 31.67) 05+ (31.67 - 26.33) 03
+(31.67 - 19.00)0-5+ (26.33 - 22.33)05+ (22.33 .1 4.87) 05
=0.2909
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This index has regain the nice feature that have the complement Balaban index °J and
the Harary-Balaban index ‘J, that is, it gives in accordance with intuitive reasoning greater
weights to the outer (terminal) CC bonds and smaller weights to the inner (interior) CC bonds
of alkanes.

THE STRUCTURE-MOTOR OCTANE NUMBER MODELING USING A SINGLE
BALABAN-LIKE INDEX

In Figure 2 we give trees corresponding to octane isomers and in Table 8 we list the
Balaban-like indices, vertex- and edge-connectivity indices and motor octane numbers of
isomeric octanes. Octane numbers are related to the ability of alkanes to form radicals by
cracking a high pressures and temperatures [41] and represent an important indicator for the
quality of an alkane as fuel.

The linear and quadratic regressions between the motor octane numbers and considered
topological indices for octanes were carried out. In Tables 9 and 10 we summarize the

regression statistics for all seven topological indices listed in Table 8.
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TABLE 8. The Balaban-like indices, vertex- and edge-connectivity indices and motor octane
numbers of isomeric octanes.

Octane* x & 1 9 9 T T MON
n-octane 3914 3414 0.361 0.197 1.997 1442 0335 -
2-methylheptane 3770 3.432 0.388 0.189 1.910 1.704 0.316 23.8
3-methylheptane 3.808 3.342 0.409 0.184 1.885 1.912 0311 350
4-methylheptane 3.808 3.380 0.417 0.183 1.879 2.002 0310 39.0
2,3-dimethylhexane 3.681 3373 0.453 0.176 1.789 2.333 0.291 78.9
2,4-dimethylhexane 3.664 3.377 0.443 0.177 1.798 2.245 0.293 69.9
2,5-dimethylhexane 3.626 3.449 0.418 0.181 1.823 2.005 0.297 55.7
3,4-dimethylhexane 3719 3.256 0.470 0.174 1.768 2.510 0.287 81.7
2,2-dimethylhexane 3.561 3.427 0.445 0.178 1.774 2.208 0.288 77.4
3,3-dimethylhexane 3.621 3.209 0482 0.173 1.737 2.590 0.281 83.4
3-ethylhexane 3.846 3.270 0.439 0.179 1.851 2.250 0.304 52.4
2,3.4-trimethylpentane  3.553 3.372 0.495 0.170 1.700 2.734 0.272 959
2,33-trimethylpentane ~ 3.504 3.283 0.530 0.166 1.646 3.042 0.262 99.4
2,2,3-trimethylpentane ~ 3.481 3.334 0.518 0.167 1.658 2.919 0.264 99.9
2,2,4-trimethylpentane ~ 3.417 3.471 0.484 0.171 1.690 2.604 0270 100.0
3-cthyl-2-methylpentane ~ 3.719 3.272 0.480 0.172 1.760 2.622 0.285 $8.1
3-cthyl-3-methylpentane ~ 3.682 3.116 0.512 0.169 1.703 2.903 0.274 88.7
2,23 3-tetramethylbutane _ 3.250 3.414 0.574 0.162 1.549 3.427 0.242 -

30ctane trees are given in Figure 2;

PMON = motor octane numbers are taken from Balaban [33].

TABLE 9. The regression statistics for seven mono-parametric linear structure-motor octane
number models for octanes. Symbols used are TI = topological index, R = correlation
coefficient, S = standard error of estimate and F = Fisher ratio.

TI

X
€

]
T
]
I
I

R
0.778
0.271
0.928
0.966
0.963
0.921
0.965

S
16.0
24.6

9.3
6.6
6.9
10.0
6.7

F
215
1.1
86.4
193.1
180.6
178.0
190.0
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TABLE 10. The regression statistics for seven quadratic models for octanes.

TI R S F
% 0.795 16.1 11.2
€ 0.275 25.5 0.5
I 0.963 7.1 83.6
cy 0.974 6.1 118.0
Iy 0.990 37 3352
r 0.951 8.2 61.5
J” 0.989 3.8 303.4

The best linear regression involves the complement Balaban index °J, but regressions
with the Harary-Balaban index 'J and the quotient Balaban index of the second kind J” are
close to it. A very poor model is obtained with the edge-connectivity index and a somewhat
better model is obtained with the vertex-connectivity index. Between these two sets of models
are models based on the original Balaban index J and the quotient Balaban index of the first
kind J’. The best quadratic models are based on the Harary-Balaban index *J and the quotient
Balaban index of the second kind J”. They are far the best stricture-motor octane number
models obtained. The rest of quadratic models are slightly better than the corresponding linear

models.

VARIABLE BALABAN-LIKE INDICES

We also decided to investigate whether the use of variable Balaban-like indices leads to
better models. The variable Balaban-like indices are based on augmented distance matrices.
The augmented distance matrices can be obtained from the standard distance matrices by
replacing diagonal elements, which are equal to zero, with the variable x [36,42). The variable
x depends on a physicochemical property considered [43]. The optimum value of x will be
attained when the standard error of estimate will be at minimum. In Table 11 we give the

augmented distance matrix for 2,3-dimethylhexane and the variable Balaban index. We denote
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the variable topological indices with superscript f as suggested by Randi¢ [36,42,43] since they
are functions of variable x.

We considered all Balaban-like topological indices in their variable form. The resulting
linear models are only slightly better than the corresponding models based on fixed indices.

The regression statistics are summarized in Table 12.

TABLE 11. Calculation of the variable Balaban index J' for the 2,3-dimethylhexane
tree given in Figure 1.

1 2 3 4 5 6 7 8
1 FO 1 2 3 4 5 2 3— d;=20
2 1 01t 2 3 4 1 2 d=14
3 21 0 1 2 3 2 1 dy=12
p- 4 321 0 1 2 3 2 dg=14
5 4 3 2 1 0 1 4 3 dg=18
6 5 4 3 2 1 0 5 4 dg=24
7 21 2 3 4 5 0 3 d=20
8 32 1 2 3 4 3 0 dg=18

J=2(20-14y95+ 2 (14-12)05 + (12:18) 05+ (14-18) 05 + (18.24)03
= 04530

TABLE 12. The regression statistics for five mono-parametric linear structure-motor octane
number models for octanes based on the variable Balaban-like indices.

I R S F
T 0.958 73 156.6
ef oo 24 0974 5.8 260.0
SN 0967 65 201.5
x = 100 0.965 66 195.1

(Ju)f Xx=-9 0.967 6.5 202.0
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Results reported in Table 12 parallel results in Table 9, that is, the best linear regression
involves the variable complement Balaban index °J', but regressions with the variable Harary-
Balaban index "J" and the variable quotient Balaban index of the second kind (J")' are close to
it. However, the improvement is really negligible, and if one takes into account a labor needed
to carry out the optimization of x, there is no advantage in this case to use the variable
Balaban-like indices.

We also carried out the linear regression analysis with the squares of all Balaban-like
indices computed using the optimum values of x (see Table 12). The improved models were
obtained only for the variable Haray-Balaban index
J' (x=-2) (R=0.974, S=5.8, F=259.4) and the variable quotient Balaban index of the second
kind (17) (x=- 9) ((R=0.974, $=5.8, F=259.6).

Finally, we carried out the quadratic regression with all Balaban-like indices computed
using the optimum values of x given in Table 12. The quadratic models with the variable
Balaban index Jf(x=130) (R=0.967, $=6.7, F=94.2), the variable Harary-Balaban index 7 (x=-
2) (R=0.983, S=4.8, F=189.2) and the variable quotient Balaban index of the second kind (J")r
(x=- 9) (R=0.983, 5=45.8, F=189.8) show improvement in the values of R and S, but the F
values are much lower than for the linear models. The quadratic models with the variable
Haray-Balaban index J' (x=-2) and the variable quotient Balaban index of the second kind (J)°

(x=-9) are still poorer than the quadratic models with the corresponding fixed indices.

COMPARISON WITH THE STRUCTURE-MOTOR OCTANE NUMBER MODELS
FROM THE LITERATURE

There are several structure-(research and motor) octane number models reported in the
literature [33, 44-48]. In Table 13 we present statistical characteristics of some of these

models in the manner they were reported.
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TABLE 13. Statistical characteristics of several linear structure-motor octane number
models for octanes taken from the literature.

I R s Ref.
X 0.745 24.7 33
] 0932 24.7 33
wi 0.957 7.4 45
AP 0.925 9.7 45
] 0.931 9.3 45
an© 0.917 10.2 45
GAl! 0.907 10.8 as

3 W = Wiener number [10]; b 7‘1 = largest eigenvalue of the vertex-adjacency matrix [3];
€ ap = determinant of the vertex-adjacency matrix of the derivative graph (45];

9 GAI = generalized ay index [45].

Among the models listed in Table 13, the model based on the Wiener index is
comparable to our model based on the quadratic model with the Balaban index J. It is better
than our several models (e.g., the linear and quadratic models with the vertex- and edge-
connectivity indices, the linear models with the Balaban index and the quotient Balaban index
of the first kind J’, the linear model with the variable Wiener index), and but worse than many
of models presented here (e.g., the linear and quadratic models based on complement Balaban
index “J, Harary-Balaban index 'J and the quotient Balaban index of the second kind J”, the
linear models based on the variable complement Balaban index ), Harary-Balaban index ‘J°
and the quotient Balaban indices of the first and second kind (J')', (J")"). All other models in

Table 13 are inferior to most of our models.

CONCLUDING REMARKS
A suite of structure-motor octane number models based on the Balaban index, Balaban-
like topological indices (the complement Balaban index, the Harary-Balaban index, the

quotient Balaban indices of the first and second kind), their variable counterparts, and vertex-
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and edge-connectivity indices are compared among themselves and with several models from
the literature. Variable indices produced in all cases slightly better linear models than fixed
indices. All linear models found in the literature, but the structure-motor octane number model
based on the Wiener index, are much poorer than most models produced here. The best
models obtained are quadratic models with the Harary-Balaban index and the quotient Balaban
index of the second kind. This is very gratifying because these two Balaban-like indices give
greater weights to the outer (terminal) CC bonds and smaller weights to the inner (interior) CC
bonds of alkanes. This agrees with the intuitive reasoning according to which the outer more
exposed bonds are associated with larger parts of molecular surface and consequently expected
to make a greater contribution to physicochemical properties than the inner, less exposed, CC
bonds. Therefore, the structure-property modeling with the Harary-Balaban index and the
quotient Balaban index of the second kind and their variable counterparts warrants a further
study using a variety of physicochemical properties of diverse chemicals to establish the range

of their applicability.
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